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ABSTRACT

Fiddler crabs (Ocypodidae Rafinesque, 1815) occupy most tropical and semitropical coast-
lines worldwide where they are keystone species and ecosystem engineers. I present updated 
ranges for all 105 species and explore both global and local patterns to establish a baseline 
distribution as species ranges begin to shift with climate change. Globally, the average number 
of  species per occupied coastline is five, with only limited allopatry observed within the group. 
Cohesive species assemblages were used to define four zoogeographic fiddler realms con-
taining 24 provinces and transitional zones. These regions can serve as units of  study when 
trying to explore which factors influence the distribution of  coastal species.
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INTRODUCTION

Fiddler crabs (Ocypodidae Rafinesque, 1815)  are a charismatic 
group of  globally distributed brachyuran crabs, popular with both 
scientists and amateur naturalists due to their colorful markings, 
aggressive waving and fighting behaviors, and the extreme claw 
asymmetry found in males. Fiddler crabs are generally considered 
a keystone species of  intertidal wetlands, serving as essential eco-
system engineers (Burns, 1976; Haines, 1976; Moore, 1991; Jones 
et  al., 1994; Kostka et  al., 2002; Curran & Martin, 2003; Smith 
et al., 2003; Guest et al., 2004; Kristensen & Alongi, 2006; Ferreira 
et al., 2007; Lim & Heng, 2007; Cannicci et al., 2008; Kristensen, 
2008; Penha-Lopes et al., 2009; Wang et al., 2010; Bartolini et al., 
2011; Chowdhury et  al., 2012; Ohzono & Miura, 2012; Sayão-
Aguiar et  al., 2012; Diele et  al., 2013; Andreetta et  al., 2014; 
Chatterjee et  al., 2014; González-Ortiz et  al., 2014; Fanjul et  al., 
2015; Nobbs & Blamires, 2015; Smith & Green, 2015; Citadin 
et  al., 2016; Correia & Guimarães, 2016; Vu et  al., 2017; Booth 
et  al., 2019; El-Hacen et  al., 2019; Moore, 2019), whose activities 
effect oxygenation of  sediment, soil drainage, belowground de-
composition, and both above- and belowground biomass (Katz, 
1980; Holdredge et  al., 2010; Thomas & Blum, 2010; Gittman 
& Keller, 2013; Michaels & Zieman, 2013). The scope of  these 
activities is likely mediated through both population density and 
local species (alpha) diversity (Katz, 1980; DePatra & Levin, 
1989; Citadin et  al., 2018; Raposa et  al., 2018; Moore, 2019). 

Fiddler crabs also serve as a primary food source for a wide range 
of  vertebrate and invertebrate taxa (Raut, 1943; Kushan, 1979; 
Subramanian, 1984; Petit & Bildstein, 1987; Zwarts & Dirksen, 
1989, 1990; Zwarts, 1990; Zwarts & Blomert, 1990; Grant, 1992; 
Turpie & Hockey, 1993; Lee & Kneib, 1994; McNeil & Rompré, 
1995; McNeil et  al., 1995; Thibault & McNeil, 1995; De Santo 
et  al., 1997; Backwell et  al., 1998; Olmos et  al., 2001; Vannini 
et al., 2001; Whitelaw & Zajac, 2002; Jennions et al., 2003; Hugie, 
2004; Martínez, 2004; Ribeiro et  al., 2004; Rulison, 2010; Rush 
et  al., 2010; Lourenço et  al., 2017; Alleman & Guillen, 2017), 
and are often viewed as a critical respondent to near-coast pollu-
tion events (Krebs & Burns, 1977; Burns & Teal, 1979; Lee et al., 
1981; Deecaraman & Fingerman, 1985; Shafer & Hackney, 1987; 
Snowden & Ekweozor, 1987, Jacob, 1988; Snowden & Ekweozor, 
1990; Burger et  al., 1991, 1992; Burger & Gochfeld, 1992; Teal 
et  al., 1992; Culbertson, 2008; Chase et  al., 2013; Zengel et  al., 
2016; Deis et al., 2017; Damare et al., 2018; Franco et al., 2018).

Although adult fiddler crabs are semiterrestrial and generally 
limited to the intertidal zone, dispersion in the group is driven almost 
entirely by their pelagic larvae, with abiotic factors such as tides, 
water temperature, and salinity likely to be among the critical fac-
tors controlling the coastline where juvenile crabs attempt to settle 
(Lambert & Epifanio, 1982; O’Connor & Epifanio, 1985; Epifanio, 
1988; Epifanio et al., 1988; Anger et al., 1994; Christy, 2003; López-
Duarte et  al., 2011; Levinton & Mackie, 2013; Simith et  al., 2014; 
Wieman et al., 2014). As global ocean temperature increases, there is 
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already evidence that some species of  fiddler crab are moving pole-
ward (Johnson, 2014; Peer et  al., 2015; Rosenberg, 2018; Truchet 
et al., 2019), suggesting that the distribution of  species of  this group 
may serve as a key indicator for wetland response to global climate 
change. Peer et al. (2018) present a recent review and study how both 
abiotic and biotic factors interact to control species presence and 
density in fiddler crabs. In order to construct and test better hypoth-
eses about factors leading to the species distributions of  fiddler crabs, 
we require a baseline description of  that global distribution.

Crane (1975) was the first work to fully delve into the global dis-
tribution of  fiddler crabs. Necessarily, her study was driven by and 
dependent on her taxonomic treatment, which recognized one 
genus, nine subgenera and 62 species (many of  which contained 
subspecies). Crane (1975) described three primary geographic re-
gions: the Indo-Pacific (later referred to generally as the Indo-West 
Pacific or IWP) (from East Africa to the Marquesas and Easter 
Island), the Americas, and the eastern Atlantic, containing four, 
three, and one endemic subgenera, respectively. Her ninth and lar-
gest subgenus was mostly restricted to the Americas, but with two 
species also found in the IWP. Within the Americas, the Atlantic 
and Pacific coastal species assemblages were almost entirely dis-
tinct, with only three species represented on both coasts by dif-
ferent subspecies. Crane further subdivided these large regions into 
smaller assemblages (largely ignored by subsequent researchers), 
including seven subdivisions within the IWP, three zones along the 
Pacific coast of  the Americas, and four zones along the Atlantic 
coast of  the Americas. Crane favored an IWP origin of  the genus, 
with two trans-Pacific migrations, one to colonize the Americas 
(and later across the Atlantic to West Africa) and a later return trip 
of  members from one of  the American-derived clades.

Few studies have explored the global distributions of  these 
crabs subsequent to the major work of  Crane (1975). Beyond a 
few studies which re-examined the phylogeographic origin of  the 
genus (Salmon & Zucker, 1988; Levinton et al., 1996; Sturmbauer 
et  al., 1996; Beinlich & von Hagen, 2006), most biogeographic 
works on fiddler crabs have focused on regional and local pat-
terns (Barnwell & Thurman, 1984; von Hagen & Jones, 1989; 
Apel & Türkay, 1999; Hopkins & Thurman, 2010; Shih et  al., 
2010b; Bezerra, 2012; Thurman et al., 2013; Hopkins et al., 2016; 
Shih et  al., 2016a; Thurman et  al., 2017; Peer et  al., 2018;), with 
a large number of  studies examining factors contributing to the 
local spatial distribution of  species within specific sites (Ono, 1965; 
Macnae, 1967; Frith et  al., 1976; Icely & Jones, 1978; Thurman, 
1998; Ravichandran et  al., 2001; Silva & de Almeida, 2002; 
Nobbs, 2003; Lim et  al., 2005; Bezerra et  al., 2006; Ohno et  al., 
2006; An et  al., 2008; Diele et  al., 2010; Mokhtari et  al., 2015; 
Nobbs & Blamires, 2015, 2017) rather than more generally among 
sites. One of  the few global studies of  the past 45 years explored 
the relationship between species richness and latitude, concluding 
that air and sea surface temperatures in early summer are a pri-
mary driver of  diversity (Levinton & Mackie, 2013).

Three general advancements in our knowledge of  fiddler crabs 
have occurred in the four-and-a-half  decades since Crane (1975) 
that bear upon the issue of  biogeography. First, substantial taxo-
nomic revision has taken place, including reorganization of  the 
subgenera into genera and an expansion of  the recognized species 
to 105 (Shih et al., 2016b; Rosenberg 2019), including descriptions 
of  entirely new, often cryptic species; recognizing former subspe-
cies as full species; and recognizing formerly synonymized species 
as distinct species. Second, phylogenetic methods and molecular 
data provide a framework for understanding the evolutionary rela-
tionships within fiddler crabs that was unavailable in 1975 (Crane 
presented dendrograms as hypotheses about relationships, based 
entirely on authorial expertise rather than data-based numerical 
methods). Third, substantially more data are available on the 
geographic distributions of  individual species, enhanced by elec-
tronic databases such as Global Biodiversity Information Facility 
(GBIF) (www.gbif.org) and citizen-science and amateur naturalist 

initiatives such as iNaturalist (www.inaturalist.org). Combined, 
these advances allow us to reexamine the global distribution of  
species, redefine zoogeographical species assemblages, and con-
struct a biogeographic infrastructure for future distributional 
studies of  the group.

DATA

Updated ranges for all 105 currently recognized extant species 
were created through literature surveys. When possible, the ini-
tial range was that supplied by Crane (1975), which was subse-
quently updated to reflect changes in taxonomic concepts, new 
observations, molecular analysis, and other considerations. Maps 
illustrating the range of  each species, along with the references 
used to determine each are provided here as Supplementary ma-
terial maps. These maps are also available from https://www.
fiddlercrab.info and will be updated on that site as new informa-
tion is discovered.

Raw land and sea map data were derived from the Natural 
Earth large scale (1:10 m) data sets, version 4.0.0 (https://www.
naturalearthdata.com/). Coastlines as used in this study include a 
combination of  both the “Coastline” (including major islands) and 
“Minor Island” data sets. Country borders displayed on maps are 
derived from the “Admin 0 – Countries” data set but are not part 
of  any analysis.

Coastline length was determined from these map data as the 
sum of  spherical (geodesic) distances between adjacent coord-
inates describing the coastline. It is worth noting that “coastline 
length” is a classic example of  a fractal dimensional problem 
(Richardson, 1961; Mandelbrot, 1983), where estimated length 
continually increases with the accuracy of  measurement, such that 
infinitesimally small measurements would lead to infinitely long 
coastlines. Thus, any estimated lengths used here are at most only 
meaningful as direct comparisons at the underlying scale of  meas-
urement (in this case, the 1:10m-based dataset).

Obligate intertidal and coastal species such as fiddler crabs have a 
somewhat unusual element to what one would consider their species 
range in that over any significantly large scale the range would usu-
ally be functionally one-dimensional (along the coasts), rather than 
the two-dimensional overlay more common for land or aquatic or-
ganisms. Thus, it does not make much sense to express the size of  
a fiddler crab range by area, but rather as some measure of  linear 
distance; an exception might be argued for an island-dense area 
such as Indonesia and the Philippines, but this is clearly the excep-
tion rather than the rule. I  estimated the extent of  species’ ranges 
using multiple measures, including 1) the sum of  inhabited coastline 
length, 2) the latitudinal range, and 3) the longitudinal range.

GLOBAL PATTERNS

Fiddler crabs are ubiquitous along non-rocky tropical and sub-
tropical coastlines throughout the world (Fig.  1), with occasional 
extensions further into temperate zones (latitudinal range is ap-
proximately 38° south to 43° north). Fiddler crabs are so common 
across tropical and subtropical coastlines, that it may be more 
meaningful to discuss where they are not found rather than where 
they are found. Three examples illustrate three likely explanations 
of  the absence of  fiddler crabs in our records.

1. False positives: the Hawaiian Islands. Limited reports of  fiddler 
crabs from the Hawaiian Islands (Owen, 1839; Kingsley, 1880) 
appear to be based on errors in collection location (Crane, 1975; 
Castro, 2011) as fiddler crabs are otherwise not know from these 
well-studied islands. Given the apparent suitability of  the habitat, 
the absence of  fiddler crabs in the Hawaiian Islands is likely due 
to a combination of  historical stochasticity and the extreme isola-
tion of  the islands (the closest islands to Hawaii known to have fid-
dler crabs are the Marshall Islands, Wake Island, and the Gilbert 
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Islands of  Kiribati, each approximately 2,400 km distant), as fid-
dler crabs appear to have only made the full trans-Pacific crossing 
(east to west) once (Levinton et al., 1996). Historical references to 
fiddler crabs in New Zealand (Kirk, 1880; Filhol, 1885a, b), which 
is otherwise at the southern edge of  suitable fiddler crab habitat, 
are also likely due to similar errors in geographic collection loca-
tion (Bennett, 1964). Reports of  fiddler crabs from clearly unsuit-
able habitat, e.g., Vancouver, Canada (Bate, 1866), the interior of  
the Amazon (Doflein, 1899), and the Adriatic Sea (Stossich, 1878), 
may represent errors in geographic collection location or mistaken 
taxonomic identification.

2. True negatives: the southwestern coast of  the Persian Gulf, including 
Saudi Arabia, Bahrain, Qatar, and southwestern United Arab 
Emirates. Although fiddler crabs are known from the northwestern, 
northern, and eastern parts of  the Persian Gulf, they appear to be 
entirely absent from the southwestern coast (Apel & Türkay, 1999; 
Naderloo, 2017), corresponding to a general decline in brachyuran 
diversity within this area. This pattern is thought to be due to the un-
usually high salinity of  this region (Apel & Türkay, 1999), reaching 
> 40 psu, which is beyond the range generally tolerated by fiddler 
crabs (Crane, 1975). It should be noted that laboratory experiments 
on adult individuals from numerous species reveal at least short-term 
tolerance to substantially higher salinities than those found in the 
Persian Gulf  (Zanders & Rojas, 1996; Khanyile, 2012; Peer et  al., 
2015); it may be that larvae have lower tolerance to high salinity, 
preventing recruitment, or that the apparent tolerance in adults de-
grades over longer-term exposure.

3. False negatives (?): Northeastern Bay of  Bengal. In the Bay of  
Bengal, fiddler crabs are found along the entire east coast of  India 
as far north as the Sundarban of  Bangladesh, along the west coast 
of  Thailand and southern Myanmar, and on the Andaman and 
Nicobar Islands. There are no reports of  fiddler crabs along the 
northeastern part of  the Bay, from eastern Bangladesh through 
northern Myanmar (Rakhine state and Ayeyarwardy region). It is 
noteworthy, however, there are also no coastal surveys which fail 
to find fiddler crabs in this region (unlike in the previous Persian 
Gulf  example). This area appears to be particularly poorly studied 
for coastal Crustacea in general (although the possibility of  ob-
scure gray literature, such as local government surveys, theses, 
and dissertations cannot be ruled out), and it is possible (and has 

historically been assumed) that fiddler crabs are present. The lack 
of  data on fiddler crabs in this region is of  particular importance 
because this coast is likely part of  the boundary between the Indian 
Ocean and Pacific Ocean species clusters (or more narrowly, 
the Indian Subcontinent Province and the Sumatra and Malay 
Peninsula Transition Zone, see below) and knowing which species 
were present would aid in understanding how the species of  these 
regions overlap. This “empty” area also marks the boundary be-
tween the recent taxonomic split of  Austruca variegata (Heller, 1862) 
(western Bay of  Bengal) and A. bengali (Crane, 1975) (southeastern 
Bay of  Bengal) (Shih et al., 2019); if  these species were found to be 
sympatric, it would likely be in this unexplored area.

The presence of  fiddler crabs in some other areas is less certain. 
For example, the range maps include four species along the coast 
of  Cambodia, but I have been unable to find any clear scientific 
record of  any species of  fiddler crabs from the country. But be-
cause these four species are generally thought to be present in both 
Vietnam to the east and Thailand to the west, they are assumed to 
also occupy the intervening coastline of  Cambodia. Other similar 
examples include the Pacific coast of  Guatemala, the southeastern 
coast of  the Arabian Peninsula that abuts the Arabian Sea (Oman 
and Yemen), and northern and northeastern Somalia. Species sur-
veys in all of  these areas could be of  interest as each is near the 
boundary of  accepted species ranges and/or occupies a potential 
transitional region between different species assemblages.

This lack of  collection data is a place where citizen science 
initiatives can sometimes prove useful. iNaturalist includes more 
than 4,500 worldwide observations of  fiddler crabs. These in-
clude an observation (Austruca Bott, 1973) from the east coast of  
Oman along the Arabian Sea, and another observation (Austruca) 
in Cambodia near the border with Thailand. Two stray obser-
vations do not completely fill in these areas, and identification to 
species via photo is often difficult, if  not impossible, but these ob-
servations indicate that fiddler crabs are not entirely absent from 
these under-explored coastlines. In rare instances, these citizen 
science initiatives provide enough evidence for range expan-
sions, such as the first observations of  Uca princeps (Smith, 1870) 
moving northward from Mexico into the US (Rosenberg, 2018). 
As a follow-up to that work, additional observations of  U.  prin-
ceps in southern California, USA, have continued through the fall 
of  2019, indicating its presence was not a single-year aberration. 
The data in citizen science databases such as these do have to be 

Figure 1. Global coastline occupancy of  fiddler crabs.
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viewed with a critical eye and a dose of  skepticism. The primary 
requirements for an observation to be deemed as “research grade” 
in iNatruralist are a date and location, evidence of  the observation 
such as photos or recorded sounds, and having at least two-thirds 
of  identifiers (minimum two) agreeing on the taxonomic identifi-
cation. This is not an overly high bar and can be particularly sus-
ceptible to erroneous identifications, as taxonomic nomenclatural 
changes in the professional literature can take a long time to pene-
trate to local and amateur usage.

I downloaded every research-grade observation of  fiddler crab 
species from iNaturalist and computationally compared it to my 
updated ranges, filtering for observations that fell outside of  the 
accepted range. The taxonomic identification was wrong in some 
cases, and a correction was submitted to iNaturalist. In most cases 
the species identification was ambiguous; these observations could 
represent range expansions, or they could represent taxonomic 
confusion with a similar species known to occupy the observed 
location. In two instances, however, the identification was clear 
enough to slightly extend the observed range of  two species: Leptuca 
terpsichores (Crane, 1941) northward into southern Guatemala and 
Tubuca flammula (Crane, 1975) eastward to the west coast of  the 
Cape York Peninsula, Australia (see Supplementary material maps). 
It may be possible to derive additional range expansions from these 
data, but we have chosen to err on the side of  caution.

In order to examine broad global diversity patterns, a 1  × 1° 
grid was created in a 90° band (45° north to 45° south) over the 
surface of  the planet. Each of  the 32,400 cells was evaluated for 
the presence of  coastline; cells without coastlines (purely ocean or 
purely land) were dropped from further analysis. For each of  the 
3,069 cells containing a coastline, the species present within the 
cell and the total length of  coastline found within the cell were 
recorded. Of  the 855 coastal cells with no observed species of  fid-
dler crabs, 35% are at latitudes above 40°, 66% are above 35°, 
and 79% are above 30°. Of  the 2,214 coastal cells with at least 
one species of  fiddler crab, the mean species present per cell is 
5.5 (median = 5), with a range of  1 to 34 (Fig. 2A). The six cells 
that exceed 30 species are found in Panamá, and include species 
from both the Pacific and Atlantic coasts. Ignoring these cross-
isthmus counts, the highest density of  species is found along the 
Pacific coasts of  southern Costa Rica and Panamá, with 28 spe-
cies present, 29 for the cell which includes Golfo Dulce, Costa 
Rica, only known location of  Minuca osa (Landstorfer & Schubart, 
2010). These extremely high densities are rare; 98% of  the cells 
have 13 or fewer species and 70% have six or fewer. About 12% 
of  the cells only had one species present. Half  of  these single-
species cells represent the range of  Afruca tangeri (Eydoux, 1835), 
while the others mostly appear to represent the latitudinal ex-
tremes of  temperate zone-tolerant species or a random scattering 

Figure 2. Global species counts in 1 × 1° coastal cells. Histogram of  species counts per coastal cell with at least one observed species (A); species presence 
by latitude (B); coastline length versus latitude (C); number of  species per latitude versus coastal length (D).
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of  observations across isolated IWP islands, generally representing 
< 10% of  a species total range.

Combining observations for cells of  the same latitude approxi-
mately recreates one of  the results of  the analyses of  Levinton & 
Mackie (2013), which indicated a peak global species richness in 
the tropics centering slightly north of  the Equator, with roughly 
symmetric secondary peaks around 20–25° latitudes, with diversity 
rapidly declining as latitude increases beyond 25° (Fig. 2B). While 
the apparent symmetry of  these secondary peaks is intriguing, it is 
not clear they represent anything other than a geographic fluke. 
An early hypothesis was that these secondary peaks represented a 
mixture zone of  temperate and tropical species. Such could be the 
case in the western Atlantic, where the northern peak corresponds 
to where three separate regions intermix around the entrance of  
the Gulf  of  Mexico (see below), but does not appear to be a likely 
explanation for anywhere else in the Northern Hemisphere nor in 
the Southern Hemisphere, where the peak is more tropical than 
in the north. An alternative hypothesis is that these secondary 
peaks happen to represent areas where there is an unusual longi-
tudinal stretch of  continental coastlines. The analysis of  Levinton 
& Mackie (2013) indicated that these secondary peaks may largely 
be driven by patterns in the IWP realm. The northern peak cor-
responds roughly to the northern edge of  the Indian Ocean, and 
thus crosses coastlines in the Red Sea, Persian Gulf, northern 
Arabian Sea, and northern Bay of  Bengal, as well as China and 
Taiwan, each of  which has a somewhat different set of  species. 
The southern peak intersects with the long coastline of  northern 
Australia and thus includes a number of  unique species not found 
outside the continent. The rough symmetry of  these secondary 
peaks is most likely meaningless.

One obvious complicating factor of  my analyses is that 1 × 1° 
cells represent different areas at different latitudes. As discussed 
above, however, because fiddler crabs are approximately function-
ally restricted to one-dimensional coastlines at global/continental 
scales (at a more local scale, distributions across estuaries and wet-
lands is clearly two-dimensional), the area is potentially of  less 
concern than the amount of  coastline found within each cell. An 
examination of  the previous results with this factor in mind reveals 
little additional explanatory power (Fig 2C–D), an observation also 
made by Levinton & Mackie, 2013. In parallel with patterns of  
land area, there is generally more coastline in the Northern than 
the Southern Hemisphere (Fig 2C). A weak correlation (r = 0.16) 
exists between coastline length and species count per cell across 
the 2,214 cells with at least one species. Summed across latitude 
(skipping the extreme latitudes with zero species) the correlation 
between coastal length and species count is 0.35 (Fig 2D). While 
increasing coastline length does correspond to an increase in spe-
cies count, the effect is weak relative to latitude. One likely reason 
coastline length lacks predictive ability is that not all coastlines are 
equally occupiable by fiddler crabs; fiddler crabs are almost en-
tirely absent from rocky shores and high-energy sandy beaches. 
A more predictive model would need to include these and other 
factors (see below).

Sympatry among the species of  fiddler crab on a macro scale 
is thus the rule rather than the exception. Only two of  105 spe-
cies, Afruca tangeri and Paraleptuca boninensis (Shih, Komai & Liu, 
2013; see Shih et  al., 2013), are allopatric with respect to other 
species of  fiddler crabs across their entire range, and these have 
wildly different distributions from each other. Afruca tangeri is the 
only species in the eastern Atlantic, occupying the entire coast of  
Africa from Angola to Morocco, with a northward extension into 
southern Spain and Portugal. In contrast, P. boninensis is endemic 
to one of  the Ogasawara Islands, Japan (approximately 1,000 
km south of  Tokyo) and the only species found on this island, 
although a number of  other species are found in the broader 
western Pacific region.

Leptuca uruguayensis (Nobili, 1901; see Nobili, 1901a) is sym-
patric with up to nine species in the northern part of  its range 

(southern Brazil) but extends southwards (through Uruguay 
and into northern Argentina) into pure allopatry for more than 
half  of  its range. The few other species that extend into allop-
atry at latitudinal extremes for fiddler crabs (e.g., Minuca pugnax 
(Smith, 1870) extending northward into New Hampshire, USA; 
Leptuca crenulata (Lockington, 1877) extending northward to Santa 
Barbara, California, USA; L.  stenodactylus (H. Milne Edwards & 
Lucas, 1843) extending southward into Chile; Austruca occidentalis 
(Naderloo, Schubart & Shih, 2016; see Naderloo et  al., 2016) ex-
tending southward in South Africa) are still sympatric with other 
species over most (> 90%) of  their range. Most fiddler crab species 
are essentially sympatric with others over their entire range.

In contrast, at the more local scale, species frequently sort into 
different parts of  the local habitat (such as whether upper or lower 
intertidal, mud or sand, more or less brackish water) to display 
microallopatry, a widely studied phenomenon in fiddler crabs 
(Ono, 1965; Macnae, 1967; Frith et al., 1976; Icely & Jones, 1978; 
Thurman, 1998; Ravichandran et  al., 2001; Silva & de Almeida, 
2002; Nobbs, 2003; Lim et al., 2005; Bezerra et al., 2006; An et al., 
2008; Diele et al., 2010; Mokhtari et al., 2015; Nobbs & Blamires, 
2015, 2017). Even when four or five species may be present at a 
given location, some of  the species likely have little direct inter-
action due to different microhabitats. Exceptions have been noted, 
however, such as an observation by Barnes (2010) of  six species 
regularly coexisting in 2 m2 quadrats (with a seventh in 4 m2). The 
highest number of  species worldwide is found along the Pacific 
coasts of  Panamá and Costa Rica (see above). I observed over the 
course of  three months in 1997 at least 14 species on a large mud-
flat adjacent to the Base Naval Vasco Nuñez de Balboa (formerly 
Rodman Naval Base) in Panamá (Rosenberg, 2000); J. Christy had 
earlier identified 16 species at this same site (personal communica-
tion). Although there was clear subdivision of  the overall mudflat 
among the species, it was not unusual to see three or four species 
within a meter, and a photograph from that time reveals individ-
uals of  four of  the small-size species of  Leptuca Bott, 1973 within 
10–15 cm from each other.

This local microallopatry highlights a secondary reason why 
coastline length is a poor determinant of  species abundance. 
Coastal hydrogeological factors such as tidal height and sedi-
ment variation, uncorrelated with coastline length, create more 
potential ecological niches for local species differentiation and 
co-occurrence (Crane, 1975). Global-scale ecological niche 
modeling of  coastal habitats and their relationship to fiddler spe-
cies abundance is beyond the scope of  this work but could repre-
sent a worthy future study.

PHYLOGEOGRAPHY

Crane (1975) considered a number of  hypotheses about the histor-
ical zoogeography of  fiddler crabs, but favored one in which fid-
dler crabs arose in the IWP and then spread eastward across the 
Pacific (via the Bering Bridge) into the Americas (and then later, 
across the Atlantic to Africa) during the Eocene-early Oligocene, 
with a return westward migration by one branch of  the American-
derived forms back into the IWP. Crane’s hypothesis was largely 
driven by assumptions about primitive versus derived behaviors 
associated with narrow-front and broad-front subgenera, respect-
ively. In contrast, Salmon & Zucker (1988) postulated early evo-
lution of  both narrow- and broad-front clades in the Tethys Sea 
until the late Oligocene, with members of  both groups radiating 
into both the IWP and the Americas as the Tethys closed. The 
first molecular phylogeny of  fiddler crabs (Levinton et  al., 1996) 
reversed Crane’s hypothesis, indicating a more likely origin of  
fiddler crabs in the Americas, with one westward trans-Pacific 
crossing and radiation into the IWP species, along with one 
eastward trans-Atlantic crossing to western Africa. Beinlich & 
von Hagen (2006) largely rejected these molecular studies and 
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returned to a hypothesis similar to that of  Crane (1975), arguing 
that morphological and fossil data (from non-fiddler crabs) sug-
gest an Australian origin of  fiddler crabs, which then expanded 
westward through “Wegener’s Indo-Atlantic Ocean,” separately 
for narrow-front and broad-front groups. Fiddler crabs would 
have expanded north along the east coast of  Africa, then through 
a Tethyan passage into the Atlantic, circumventing the need for 
a Pacific crossing. This hypothesis is largely incongruent with all 
subsequent molecular phylogenetics of  fiddler crabs (most recently 
Shih et al., 2016b), which continue to suggest the Americas as the 
most likely area of origin.

The base of  the fiddler crab phylogeny has two key splits 
(Shih et  al., 2016b). The first separates fiddler crabs into two 
groups: 1)  Ucinae Dana, 1851, and/or Ocypodinae Rafinesque, 
1815, consisting of  Uca Leach, 1814 (found on both coasts of  
the Americas) and Afruca Crane, 1975 (restricted to the eastern 
Atlantic), possibly along with the ghost crabs (Ocypode Weber, 1795, 
found worldwide); and 2) Gelasiminae Miers, 1886, consisting of  
the remaining nine genera of  fiddler crabs. The second major 
split separates Gelasiminae into two tribes with complete geo-
graphic separation: 1)  Gelasimini Miers, 1886, consisting of  the 
six IWP genera, and 2) Minucini Rosenberg, 2019, consisting of  
the three American broad-front genera. It should be noted that, 
just as with fiddler crabs, ghost crabs (Ocypode) appear to have two 
strongly supported clades with perfect geographic division, one for 
the three American species and one for the ~20 IWP species (Shih 
et al., 2016b).

Viewed from the standpoint of  the geographic realms of  fid-
dler crabs (see below), the Eastern Atlantic Realm contains 
only one monospecific genus, Afruca tangeri, whereas the Indo-
West Pacific Realm contains only the six genera making up the 
tribe Gelasimini. The fiddler crabs of  the two American realms 
(Eastern Pacific and Western Atlantic) do not form a single mono-
phyletic unit, either across or within the two realms.

Three genera (Uca, Minuca Bott, 1954, and Leptuca) are found 
on both coasts of  the Americas, with a fourth monospecific genus 
(Petruca Shih, Ng & Christy, 2015; see Shih et al. 2015) found only 
on the Pacific coast. No species is found on both coasts, however, 
suggesting the origin of  all three (and particularly the separation 
of  the more closely related Minuca and Leptuca) prior to the closing 
of  the Isthmus of  Panamá about 2.8 million years ago (O’Dea 
et  al., 2016). All three genera contain trans-continental species 
pairs that seem to be closely related, suggesting potential vicari-
ance speciation from the closing of  the isthmus: Uca maracoani 
(Latreille, 1803) and U.  insignis (H. Milne Edwards, 1852), Leptuca 
thayeri (Rathbun, 1900) and L. umbratila (Crane, 1941), and Minuca 
vocator (Herbst, 1804) and M. ecuadoriensis (Maccagno, 1928). Given 
that the Eastern Pacific Realm has about 50% more species than 
the Western Atlantic Realm (36 versus 21), one would expect spe-
cies from these genera to also be unequally distributed between 
the realms. Both Uca (7 versus 2) and Leptuca (21 versus 9) are more 
speciose on the Pacific than the Atlantic coast, but Minuca (7 versus 
10) is the opposite, albeit more evenly split than either of  the other 
two. Species of  Minuca represents 50% of  the Atlantic species, but 
only 25% of  the Pacific species. Most of  these species of  Minuca 
occupy the upper intertidal zone, in or above the edge of  the 
mangroves (Crane, 1975; J. Christy, personal communication). In 
contrast, Leptuca and Uca occupy a wider variety of  microhabitats 
which appear to be more readily available along the Pacific coast 
than the Atlantic. Whether the underlying mechanism controlling 
diversity is differential expansion into available ecological niches 
on the Pacific or differential extinction due to loss of  such niches 
on the Atlantic is unclear.

Within the Indo-West Pacific Realm, two of  the genera (Xeruca 
Shih, 2015 and Cranuca Beinlich & von Hagen, 2006) are mono-
specific and somewhat limited in distribution, whereas species of  
the other four genera (Gelasimus Latreille, 1817; Tubuca Bott, 1973; 
Austruca Bott, 1973; and Paraleptuca Bott, 1973) are generally found 

throughout the entire realm. Although the faunal assemblages are 
largely distinct, there are species which overlap the subrealms de-
scribed below. One subgenus, Tubuca (Australuca) Crane, 1975, is 
restricted to Australia, but otherwise there is little in the way of  
clear broad-scale phylogeogaphy within the region.

A rough biogeographic pattern of  community assemblage is 
nevertheless apparent. As mentioned above, the median number 
of  species per 1  × 1° cells (with at least one species) is five; this 
number holds worldwide as well as in the IWP. Superficially, if  
one wanted to describe an average species assemblage of  fiddler 
crab for any location in the IWP, one could assume it will con-
tain one species from each of  the subgenera Austruca (Austruca), 
Gelasimus (Gelasimus) and Tubuca (Tubuca), one species from the 
genus Paraleptuca, and one additional random species. While spe-
cies within each of  the four clades can be found in sympatry 
(particularly within the geographically/structurally complex, 
species-rich Malayan Archipelago), it appears that within-clade al-
lopatry is more common, with within-clade species turnover more 
often leading to having only one species in any particular location.

ZOOGEOGRAPHICAL REGIONS

Just as taxonomists and systematists seek to organize organisms 
into a hierarchical nomenclatural framework, one of  the primary 
goals of  biogeography is to classify organisms into meaningful 
geographical units. These bioregionalization schemes play an im-
portant role in many disciplines, including conservation biology, 
historical and ecological biogeography, evolutionary biology, and 
macroecology, providing a geographic framework of  hypoth-
eses and operational units for analysis, study, or conservation 
(Morrone, 2009; Kreft & Jetz, 2010; Vilhena & Antonelli, 2015). 
Many studies have focused on higher taxonomic units or cross-
taxonomic assemblages of  species (e.g., Hagmeier & Stults, 1964; 
Holt et al., 2013), but the same principles can be applied at smaller 
taxonomic or spatial scales.

The regionalization scheme for fiddler crabs described here 
borrows from the Marine Ecoregions of  the World (MEOW) 
(Spalding et  al., 2007), although the specifics are somewhat dif-
ferent (see below). The scheme described here for fiddler crabs 
contains two main levels. The largest spatial units are referred 
to as “realms,” large oceanic coasts, separated from other realms 
by continents, deep ocean basins, or colder temperate and arctic 
waters unsuitable for the survival of  fiddler crabs, in contrast to 
the MEOW realms, many of  which are trans-oceanic. Nested 
within the realms are “provinces” (Spalding et al., 2007: 575):

“Large areas defined by the presence of  distinct biotas that have 
at least some cohesion over evolutionary time frames. Provinces 
will hold some level of  endemism, principally at the level of  spe-
cies. Although historical isolation will play a role, many of  these 
distinct biotas have arisen as a result of  distinctive abiotic features 
that circumscribe their boundaries. These may include geomor-
phological features (isolated island and shelf  systems, semienclosed 
seas); hydrographic features (currents, upwellings, ice dynamics); 
or geochemical influences (broadest-scale elements of  nutrient 
supply and salinity).”

The provinces described for fiddler crabs follow this definition 
with a focus on cohesion of  species co-occurrences and the use 
of  distinctive abiotic features to demarcate boundaries whenever 
possible.

Parallel in size to the provinces, also being defined here are 
“transition zones,” regions that clearly represent the faunal mixing 
of  two or more neighboring provinces, rather than representing 
a unique entity on its own (although some of  the transition zones 
contain unique endemic species). The provinces are not further 
divided into the equivalent of  the small-scale “ecoregions” in the 
MEOW scheme, although subrealms or subprovinces are being 
suggested in a few cases.
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Fiddler crabs fall into four realms, each with an entirely unique 
and non-overlapping set of  species. The species and genera in 
two of  the realms form monophyletic clades, while the other two 
realms share genera. A summary of  all realms and provinces and 
their species is shown in Figure 3.

Eastern Atlantic Realm

The Eastern Atlantic realm consists of  only one province as it 
contains only one species, Afruca tangeri in a monospecific genus. 
This northern edge of  the province starts in southwestern 
Europe (southern Portugal and southwestern Spain) and extends 

Figure 3. Summary of  fiddler crab regionalization with species sorted into realms and provinces.
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southward across most of  the west coast of  Africa to Angola 
(Fig. 4). The province includes nearby islands such as São Tomé 
and Príncipe, Cape Verde archipelago, and the Canary Islands. 
The province does not extend into the Mediterranean, where 
fiddler crabs are absent, perhaps due its moderately high sal-
inity which is at the upper end of  their tolerance in general 
(Crane, 1975), and above that of  A.  tangeri specifically (Spivak 
& Cuesta, 2009).

Western Atlantic Realm

The Western Atlantic realm contains 21 species, including mem-
bers of  Uca, Minuca, and Leptuca. This region can be divided into 
four provinces and two transitional zones (Fig. 5). These four prov-
inces are similar to the zones described for this region by Crane 
(1975).

Atlantic Coast of  USA Province. The province contains three well-
studied species, Minuca pugnax, M.  minax (Le Conte, 1855), and 
Leptuca pugilator (Bosc, 1802), and extends along almost the en-
tire Atlantic coast of  the United States from Massachusetts to 
eastern Florida. At the northern end, M. pugnax extends into New 
Hampshire (Johnson, 2014), slightly further northward than the 
other two species, whereas all three species have somewhat dif-
ferent southern extents, with M. pugnax extending to the east coast 
of  Florida; L.  pugilator wrapping around Florida to Alabama or 
Mississippi; and M. minax with a disjunct distribution on the east 
and west coasts of  Florida (but not southern Florida) extending 
along the northern Gulf  of  Mexico to Texas.

Gulf  of  Mexico Province. This province begins about the panhandle 
of  Florida, USA, and encircles the Gulf  of  Mexico to Veracruz, 
Mexico. This region contains six essentially endemic species: 
Leptuca panacea (Novak & Salmon, 1974), L.  spinicarpa (Rathbun, 
1900), L. subcylindrical (Stimpson, 1859), Minuca longisignalis (Salmon 
& Atsaides, 1968), M.  marguerita (Thurman, 1981), and M.  virens 
(Salmon & Atsaides, 1968). Minuca minax and M. vocator (primarily 
members of  neighboring subregions to the east and south, re-
spectively) are found throughout large parts of  the Gulf  subregion 
as well. A few additional species extend into the edges of  the Gulf  
province from neighboring regions, including: Leptuca pugilator, 
Minuca burgersi (Holthuis, 1967), M.  rapax (Smith, 1870), and Uca 
major (Herbst, 1782). Crane (1975) regarded this province as only 
including the US states bordering the Gulf, but modern range 
data clearly suggest that it include the entire western coast of  the 
Gulf, including the Mexican states of  Tamaulipas and Veracruz. 
Recent biogeographic studies of  the fiddler crabs in the region in-
clude Hopkins & Thurman (2010) and Thurman et al. (2018).

Florida/Yucatán Transition Zone. The state of  Florida, USA repre-
sents a transitional zone between three distinct provinces: the tem-
perate Atlantic Coast province to the north, the semi-tropical Gulf  
of  Mexico province to the west, and the Tropical Western Atlantic 
province to the south. Members of  all three provinces intermix 

in Florida, leading to a faunal assemblage that is unique to the 
state and otherwise not representative of  any of  the surrounding 
provinces. A similar transition zone is found on the opposite side 
of  the mouth of  the Gulf  of  Mexico, ranging from the Yucatán 
Peninsula west into the state of  Tabasco. One species, Leptuca 
speciosa (Ives, 1891), is primarily restricted to this transitional zone, 
with additional observations only from western Cuba (directly be-
tween the two peninsulas and arguably part of  the zone) and the 
Bahamas to the east of  Florida.

Tropical Western Atlantic Province. The islands of  the Caribbean, 
including the greater and lesser Antilles, as well as the Atlantic 
coasts of  Central and South America all makes up one large 
province consisting of  10 species: Leptuca cumulanta (Crane, 1943), 
L. leptodactyla (Rathbun, in Rankin, 1898), L. thayeri, Minuca burgersi, 
M. mordax (Smith, 1870), M. rapax, M. victoriana (von Hagen, 1987), 
M. vocator, Uca major, and U. maracoani. Leptuca speciosa may be present 
along the northern margin of  the province, whereas L. uruguayensis 
may be present along the southern margin. The province extends 
to southern Brazil, ending about Rio de Janeiro and Santos (São 
Paulo state). This southern limit marks the boundary between 
two local biomes: tropical mountains and sedimentary plains to 
the north and subtropical mountainous Gondwana Shield to the 
south (Thurman et al., 2013).

The province could be divided into subprovinces, although 
none of  the possibilities are particularly satisfactory. Four of  the 
major species in this province (L. thayeri, M. burgersi, M. rapax, and 
M.  vocator) are generally found throughout most of  the province. 
The other six major species have a variety of  distributional pat-
terns (Table 1) that could lead to continental versus island, Central 
versus South America, and even northern South America versus. 
eastern South America subdivisions. As many as four poten-
tial subprovinces can be envisioned: Caribbean Islands, Central 
American Atlantic Coast, Northern South American Coast, and 
Eastern South American Coast, although these could be com-
bined into larger-grained units as well.

The division between northern and eastern South America was 
studied by Thurman et  al. (2013), with the point of  separation 
around the Ponta do Calcanhar, Rio Grande do Norte, Brazil, 
the location at the northeastern corner of  the continent where the 
Central South Equatorial Current that flows from Africa to South 
America splits into the North Brazil and South Brazil currents. 
Thurman et  al. (2013) did not find any restriction to population 
gene flow across this potential barrier.

Southeastern Brazil Transition Zone. The tropical species that extend 
southward to around Rio de Janeiro and Santos quickly begin 
to disappear southward into more subtropical and temperate bi-
omes (Thurman et al., 2013). This is approximately where one first 
encounters the only South American temperate species, Leptuca 
uruguayensis, making the stretch of  Brazilian coastline from ap-
proximately Santos to Cabo de Santa Marta, Santa Catarina, a 
transition zone between the tropical and temperate provinces of  
the southwestern Atlantic.

Uruguay/Argentina Province. This small temperate province starts in 
southern Brazil about Cabo de Santa Marta and extends south 
across Uruguay into northern Argentina. It contains one species, 
Leptuca uruguayensis. The province represents approximately 60% 
of  the range of  this species, most of  the rest being in the transi-
tional zone to the north. Truchet et al. (2019) reported new south-
ernmost records of  this species, possibly representing another 
example of  poleward expansion as ocean temperatures rise.

Eastern Pacific Realm

The Eastern Pacific realm contains 36 species of  the genera Uca, 
Minuca, Leptuca, and Petruca. Most of  the species have ranges falling Figure 4. Provinces of  the Eastern Atlantic Ocean Realm: West Africa.
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into one of  four general patterns: 1) species endemic to the Gulf  
of  California, Mexico; 2) species found across the Pacific coast of  
Mexico (including the Gulf  of  California) but not extending fur-
ther south; 3) species extending from at least the southern Gulf  of  
California into South America; and 4)  species found predomin-
antly between El Salvador and northern Perú. These species com-
bine to create one island province and two to three semi-distinct 
continental provinces similar to the three zones described by 
Crane (1975), two of  which have the potential for further internal 
division (Fig. 6).

Pacific Mexico Province. The northernmost of  the eastern Pacific 
regions extends from southern California, USA through Baja 

California and the Gulf  of  California (Sea of  Cortez), Mexico and 
south to Oaxaca in southern Mexico. It contains eight primary 
species, two of  which, Uca monilifera Rathbun, 1915 and Leptuca 
coloradensis (Rathbun, 1893), are endemic to the northern part of  
the Gulf; another two, L.  crenulata and L.  musica (Rathbun, 1915) 
ranging beyond the Gulf  but still constrained southward within 
Mexico (with L.  crenulata extending northward into the southern 
part of  California, USA). Five additional species, Leptuca latimanus 
(Rathbun, 1893), Minuca brevifrons (Stimpson, 1860), M. ecuadoriensis, 
M. zacae (Crane, 1941), and Uca princeps, are common in at least part 
of  this region but extend well southward, most to South America.

One could arguably divide this province into two to three 
subprovinces: 1)  a northern subprovince, including the Pacific 

Figure 5. Provinces of  the Western Atlantic Ocean Realm: Atlantic Coast of  the USA (A), Gulf  of  Mexico (B), Florida/Yucatán Transition Zone (C), 
Tropical Western Atlantic (D), Southeastern Brazil (E), and Uruguay/Argentina (F).

Table 1. General distribution of  six species of  fiddler crabs in the Tropical Western Atlantic province; four additional species are found in all four subareas. 
X, major presence throughout area; ~, minor presence.

Species Caribbean Islands Central America Northern South America Eastern South America

Leptuca cumulanta ~  X ~

L. leptodactyla X ~ X X

Minuca mordax  X X X

M. victoriana    X

Uca major X  X  

U. maracoani   X X
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coast of  Baja California state, Mexico and southern California, 
USA containing two species: L crenulata and U. princeps (their dis-
tribution in the US was more recently discussed by Rosenberg, 
2018); 2)  a northern Gulf  of  California subprovince containing 
four species (L. crenulata, L. coloradensis, U. monilifera, and U. princeps); 
and 3)  a western Mexico subprovince including the Pacific coast 
of  Mexico south of  the Gulf  of  California, the southern part of  
the Gulf, and the Pacific coast of  the Baja California Sur state, 
Mexico, containing all of  the province’s species other than the two 
northern Gulf  endemics.

There likely should be a transition zone between the southern 
edge of  this province and the northern edge of  the Tropical 
Eastern Pacific province, likely located in southern Mexico, 
Guatemala, and/or El Salvador, but surveys of  these coasts have 
been rare enough to make clear delineation currently impossible.

Tropical Eastern Pacific Province. Twenty-four species are thought 
to have roughly similar ranges starting from approximately El 
Salvador to Nicaragua in the north through at least Panamá in 
the south, with most extending at least to the Gulf  of  Guayaquil 
in northern Perú: Leptuca batuenta (Crane, 1941), L.  beebei (Crane, 
1941), L.  deichmanni (Rathbun, 1935), L.  dorotheae (von Hagen, 
1968), L.  festae (Nobili, 1901, see Nobili, 1901b), L.  inaequalis 
(Rathbun, 1935), L.  limicola (Crane, 1941), L.  oerstedi (Rathbun, 
1904), L.  pygmaea (Crane, 1941), L.  saltitanta (Crane, 1941), 
L. stenodactylus, L. tenuidpedis (Crane, 1941), L. terpsichores, L. tomentosa 
(Crane, 1941), L.  umbratila, Minuca argillicola (Crane, 1941), 
M.  galapagensis (Rathbun, 1902), M.  herradurensis (Bott, 1954), 
Petruca panamensis (Stimpson, 1859), Uca heteropleura (Smith, 1870), 
U.  insignis, U.  intermedia von Prahl & Toro, 1985, U.  ornata (Smith, 
1870), and U.  stylifera (H. Milne Edwards, 1852). Two additional 
species fall within this province, but with substantially more 
limited ranges: Minuca osa (only known from the Golfo Dulce, 
Costa Rica) and Leptuca tallanica (von Hagen, 1968) (restricted to 
southern Ecuador and northern Perú). Five additional species 
(Leptuca latimanus, Minuca brevifrons, M.  ecuadoriensis, M.  zacae and 
Uca princeps) extend from Mexico through most of  this province 
as well, bringing the total number of  species in the region to 31.

The province can roughly be divided into three subprovinces: 
1)  a northern subprovince consisting of  the Pacific coasts of  El 

Salvador, Honduras, and Nicaragua; 2) a central subprovince con-
sisting of  the Pacific coasts of  Costa Rica and Panamá, and 3) a 
southern subprovince consisting of  the Pacific coast of  Colombia, 
along with Ecuador and northern Perú (Gulf  of  Guayaquil to 
Sechura). The central subprovince is the core of  the region, with 
30 of  the 31 species present (Leptuca tallanica is only found in 
southern Ecuador and northern Perú), with most found across the 
entire subprovince. The northern and southern subprovinces each 
contain about 24 of  the 31 species, with different missing subsets. 
Missing from the north are L.  dorotheae, L.  pygmaea, L.  tallanica, 
M. argillicola, M. galapagensis, M. osa, and U. intermedia; missing from 
the south are L.  deichmanni, L.  limicola, L.  oerstedi, Minuca brevifrons, 
M. herradurensis, M. osa, and M. zacae.

Perú/Chile Province. Most of  the Tropical Eastern Pacific spe-
cies have ranges that end in northern Perú between the Gulf  of  
Guayaquil and Sechura, with only three species (L.  stenodactylus, 
M.  galapagensis, and U.  princeps) extending further south through 
the remainder of  the Peruvian coast and into northern Chile. 
Compared to the area immediately north, this region is particu-
larly impoverished with respect to fiddler crabs, with few suitable 
habitats and relatively cool temperatures due to the Humboldt 
Current (Crane, 1975). Lacking the unique element that contrib-
utes to some of  the other subtropical/temperate provinces (such 
as the temperate endemic L.  uruguayensis found on the southern 
Atlantic coast), there is no transition zone between this and 
the Tropical Eastern Pacific province so the Perú/Chile prov-
ince might alternatively be considered an extremely southern 
subprovince of  its tropical northern neighbor.

Galápagos Islands Province. The eastern Pacific Ocean largely lacks 
the large offshore island chains and oceanic islands found in the 
western Atlantic and Indian oceans, and the central and western 
parts of  the Pacific Ocean. Fiddler crabs are either absent from 
central Pacific islands (such as the Hawaiian Islands) or clearly part 
of  the IWP fauna (as in French Polynesia). The notable excep-
tion are the Galápagos Islands, which contain two species: Leptuca 
helleri (Rathbun, 1902) (endemic to the islands, but see below) and 
Minuca galapagensis (also found in the Pacific Coastal region, al-
though a strong candidate for a population genetic and taxonomic 

Figure 6. Provinces of  the Eastern Pacific Ocean Realm: Pacific Mexico (A), Tropical Eastern Pacific (B), Perú/Chile (C); Galápagos Islands (D).
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study to determine if  the island and continental populations actu-
ally belong to the same species). The two Galápagos species never 
appear to be locally sympatric, being found on different islands 
or on different parts of  the same island, with only one known in-
stance of  them being found as close as adjacent coves of  the same 
bay (Garth, 1946).

Moscoso (2012, 2013) reported L.  helleri in catalog lists from 
Puerto Pizarro, northern Perú. I have been unable to confirm or 
otherwise obtain more information about these observations and 
do not know if  it is an error or that it represents an expansion of  
the otherwise Galápagos endemic to the continent.

Indo-West Pacific Realm

This large region includes both the entirety of  the Indian Ocean 
as well as the central and western Pacific Ocean. The realm con-
tains 47 species of  Austruca, Cranuca, Gelasimus, Paraleptuca, Tubuca, 
and Xeruca, all of  which constitute the tribe Gelasimini, exclusively 
of  IWP species (Rosenberg, 2019). A  number of  species previ-
ously thought to be widespread across this realm have been subse-
quently split into multiple species with reduced geographic range 
(Naderloo et  al., 2010; Shih et  al., 2010a, 2012, 2013, Naderloo 
et al., 2016; Shih et al., 2018, 2019). The Indian Ocean species are 
almost completely distinct from those of  the western and central 
Pacific Ocean, excluding the transitional overlap zone in western 
Indonesia and the Malay peninsula. Only Gelasimus tetragonon 

(Herbst, 1790)  is widely spread across both oceans, although 
Austruca annulipes (H. Milne Edwards, 1837) still has a large de-
gree of  overlap as well. It can be suggested that the Indian Ocean 
and the central and western Pacific Ocean should be viewed as 
subrealms of  the IWP. This realm also shows the sharpest diver-
gence between the provinces described below and the divisions 
suggested by Crane (1975).

Indian Ocean Subrealm

The subrealm contains 12 species and can be divided into four 
provinces and two transition zones (Fig.  7). The eastern edge of  
the Indian Ocean is a major transitional area, separating the 
Indian Ocean and western Pacific faunas. The Maldives are cur-
rently not included in any province as the identification of  its spe-
cies is somewhat uncertain. This regionalization contrasts with 
Crane (1975), who divided the Indian Ocean into two divisions, 
one from eastern Africa to western India, and one from eastern 
India across the Malay Peninsula to northern Borneo.

East Africa Province. The province extends from the southeastern 
coast of  South Africa through the southern part of  Somalia to-
gether with the islands of  the western Indian Ocean, including 
Madagascar, Réunion, Mauritius, Mayotte, and the Seychelles. 
The province contains three endemic species, Austruca occidentalis, 
Paraleptuca chlorophthalmus (H. Milne Edwards, 1837), and Tubuca 

Figure 7. Provinces of  the Indian Ocean Subrealm: East Africa (A), Red Sea (B), Strait of  Hormuz Transition Zone (C), Persian Gulf  (D), Pakistan/India 
Transition Zone (E). and Indian Subcontinent (F).
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urvillei (H. Milne Edwards, 1852), as well as three species that 
extend into other provinces, Cranuca inversa (Hoffmann, 1874), 
Gelasimus hesperiae (Crane, 1975), and G. tetragonon.

Red Sea Province. The Red Sea Province includes not only the Red 
Sea, but most likely the Gulf  of  Aden, the island of  Socotra, and 
possibly the southeastern coast of  Oman. The province contains 
three species: Austruca albimana (Kossmann, 1877), Cranuca inversa, 
and Gelasimus tetragonon, with G.  hesperiae and Tubuca alcocki Shih, 
Chan & Ng, 2018 (Shih et al., 2018) occasionally found along the 
fringe of  the province. The province is largely defined by the pres-
ence of  Austruca albimana, which otherwise is only found on the 
edges of  the neighboring transition zone.

Strait of  Hormuz Transition Zone. The Strait of  Hormuz, the 
waterway connecting the Persian Gulf  to the Arabian Sea, also 
serves as the meeting point for fiddler crabs from the Red Sea 
Province to the south and the Persian Gulf  Province to the west 
and north. This zone includes the coastline along the southern 
edge of  the strait, starting from the Musandam Peninsula of  
Oman and running southwest across the United Arab Emirates, 
and Qeshm Island on the north side of  the strait off the coast 
of  Iran. Species in the zone include Austruca albimana, A.  iranica 
(Pretzmann, 1971), A.  sindensis (Alcock, 1900), Cranuca inversa, 
Gelasimus hesperiae, and G. tetragonon.

Persian Gulf  Province. This province runs across the northern coasts 
of  the Persian Gulf  and the Gulf  of  Oman between Kuwait to the 
west and western Pakistan to the east. Two species, Austruca iranica 
and A. sindensis, inhabit the province. Fiddler crabs are not found 
on the southern coast of  the Persian Gulf  (Saudi Arabia, Bahrain, 
and Qatar) due to unusually high salinity (Apel & Türkay, 1999; 
Naderloo, 2017) (see above).

Pakistan/India Transition Zone. A small transition zone exists 
in eastern Pakistan and northwestern India, representing the 
boundary between the Persian Gulf  and Indian Subcontinent 
Provinces.

Indian Subcontinent Province. The province includes continental India 
as well as Bangladesh and Sri Lanka. It might also include the 
Andaman and Nicobar Islands, whose unclear species assemblage 
makes it hard to place in either this province or the neighboring 
transition zone. Four species are found in the province: Austruca 
annulipes, A. variegata, Gelasimus hesperiae, and Tubuca alcocki. An add-
itional species, T. rosea (Tweedie, 1937), has a range that extends to 
Bangladesh and northeastern India. Austruca variegata is only found 
on the eastern coast of  India, opening up the possibility of  eastern 
(Arabian Sea) and western (Bay of  Bengal) subprovinces.

Sumatra and Malay Peninsula Transition Zone. The tropical lands and 
water separating the Indian and Pacific Oceans contain a complex 
mix of  species from both subrealms (Fig.  8). This transition 
zone includes the western Malay Peninsula (southern Myanmar, 

southern Thailand, continental Malaysia, and Singapore) and 
the island of  Sumatra. It likely includes the Andaman and 
Nicobar Islands (which otherwise would be part of  the Indian 
Subcontinent Province), and may also include the eastern side 
of  the Malay Peninsula, including some or all of  the coast of  the 
Gulf  of  Thailand (which otherwise would represent a southern 
extension of  the Northeast Asian Province). It likely does not ex-
tend further eastward to Borneo or Java.

One of  the complicating features of  this zone is that it repre-
sents a likely sympatric zone for many difficult-to-distinguish spe-
cies (which are otherwise allopatric from neighboring regions), 
leading to many records with unresolved taxonomic issues. For 
example, the species name vocans has been commonly used in the 
identification of  fiddler crabs in this zone, but may refer to either 
Gelasimus vocans (Linnaeus, 1758) or G. hesperiae. Similar issues exist 
with a variety of  species of  Austruca and Tubuca.

Two species are predominantly found only in this zone: Austruca 
bengali and Tubuca rosea, with the former entirely restricted to 
the zone and the latter with isolated populations in neighboring 
provinces.

Western Pacific Ocean Subrealm

The Western Pacific Ocean subrealm (which includes both the 
western and central Pacific Ocean) easily has the most complex 
physiography for fiddler crabs. This is the only region that can 
be viewed functionally as having two-dimensional coastlines be-
cause of  the dense island groups of  (primarily) Indonesia and 
the Philippines allow for admixture and spread from Japan to 
Australia (north to south) and eastern Asia to New Guinea and 
beyond (west to east) (Fig.  9). In contrast, the islands of  the 
Caribbean have neither the number, density, extent, or arrange-
ment (outside of  the northern cluster of  larger islands, most of  
the Antilles form a rather linear, if  curved chain) to have such an 
effect beyond relatively local scales. This subrealm contains 36 
species, substantially more than the 12 of  the neighboring Indian 
Ocean subrealm. Many of  the provinces below are similar to 
those described by Crane (1975), although the precise bounds are 
often somewhat different.

Northeastern Asia Province. This province includes Vietnam, eastern 
China, and the southern half  of  the Korean peninsula (the 
northern extent of  IWP fiddler crabs is approximately at 37–38° 
latitude, so the northern coastlines of  these countries are outside 
of  the province), as well as Japan (including the Ryukyu Islands) 
and Taiwan. The province has five dominant species: Austruca 
lactea (De Haan, 1835), Gelasimus borealis (Crane, 1975), Paraleptuca 
splendida (Stimpson, 1858), Tubuca arcuata (De Haan, 1835), and 
T.  paradussumieri (Bott, 1973), the first four being essentially en-
demic to the province. The province can be further subdivided 
into two subprovinces: a continental subprovince (Vietnam, China, 
and Korea), and an island subprovince (Taiwan and Japan).

The continental subprovince includes one additional spe-
cies, Tubuca acuta (Stimpson, 1858), which is endemic to the con-
tinent. It is possible that this subprovince (and the province as a 
whole) continues southward through the rest of  Vietnam and into 
Cambodia and even northeastern Thailand, but as mentioned 
earlier, species surveys from those regions are absent or uncertain.

The island subprovince, which might alternatively be viewed as 
a transition zone, contains one endemic species Xeruca formosensis 
(Rathbun, 1921), found only on Taiwan and neighboring small is-
lands, and seven additional species also found in the neighboring 
Malay Archipelago province: Austruca perplexa (H. Milne Edwards, 
1852), Austruca  triangularis (A. Milne-Edwards, 1873), Gelasimus 
jocelynae (Shih, Naruse & Ng, 2010; see Shih et al., 2010a), Gelasimus 
tetragonon, Paraleptuca crassipes (White, 1847), Tubuca coarctata (H. 
Milne Edwards, 1852), T.  dussumieri (H. Milne Edwards, 1852), 
and T. typhoni (Crane, 1975). Austruca annulipes and Gelasimus vocans Figure 8. Sumatra/Malay Peninsula Transition Zone.
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may rarely be found in this subprovince as well. The subprovince 
borders the Malay Archipelago Province to the east and somewhat 
merges into the Sumatra and Malay Peninsula Transitional Zone 
to the south.

Ogasawara Islands Province. This tiny province (or perhaps proto-
province) consists of  the isolated Ogasawara Islands southeast of  
the main Japanese islands. Only an endemic species is found on 
the islands, Paraleptuca boninensis.

Malay Archipelago Province. This island province is predominantly 
made up of  Indonesia (excluding Sumatra, part of  the Malay 
Peninsula Transition Zone) and the Philippines, but also includes 
nations sharing islands with Indonesia (e.g., the islands of  Borneo, 
New Guinea, and Timor), as well as Palau and most of  Melanesia 
(Solomon Islands, Vanuatu, and New Caledonia). This is likely the 
most structurally complicated province, not only because of  its 
two-dimensional structure, but also because it sits in the center of  
the other five provinces of  the Western Pacific subrealm, with po-
tential species mixing on almost every margin, not even including 
where this province merges into the Indian Ocean and its fauna 
along its southwestern margin. The core of  the province would 
best be described as the central islands that run from Sulawesi and 
the Banda Arc of  Indonesia in the south, through Luzon in the 
Philippines in the north. Islands on the western (Borneo), southern 
(e.g., Java, Bali, Nusa Tenggara, Timor), and eastern (New Guinea 

and beyond) fringes are more likely to have species that overlap 
with those from the neighboring regions. Major species in the 
province include: Austruca annulipes, A.  cryptica (Naderloo, Türkay 
& Chen, 2010; see Naderloo et al., 2010), A. perplexa, A. triangularis, 
Gelasimus jocelynae, G. tetragonon, G. vocans, Paraleptuca crassipes, Tubuca 
bellator (White, 1847), T.  coaractata, T.  demani (Ortmann, 1897), 
T.  dussumieri, T.  forcipata (Adams & White, 1848), T.  paradussumieri, 
T.  rhizophorae (Tweedie, 1950), and T.  typhoni. Additional species 
found on the fringes are included in Figure 3. Attempts to further 
divide this province into subprovinces are hindered not only by 
its complicated physiography, but by taxonomic uncertainty sur-
rounding many species identifications and the potential for sym-
patry of  closely related and difficult-to-distinguish species.

Polynesia and Micronesia Province. The province consists of  most 
of  the isolated islands of  the central and western Pacific Ocean, 
including most of  Polynesia (Cook Islands, French Polynesia, 
Samoa, Tonga, Tuvalu, and Wallis and Futuna; but excluding 
the Hawaiian Islands, New Zealand, Eastern Island, and Pitcairn 
Islands, none of  which have fiddler crabs), Micronesia (Kiribati, 
Mariana Islands, Marshall Islands, Wake Island, Federated States 
of  Micronesia, Caroline Islands, Guam), Fiji (representing the 
eastern most part of  Melanesia), and Palmyra Atoll. The primary 
species in this province are Austruca perplexa, Gelasimus excisa (Nobili, 
1906), G.  tetragonon, and Paraleptuca crassipes. Gelasimus excisa is en-
demic to a geographic cluster of  islands including Tonga, Tuvalu, 

Figure 9. Provinces of  the Western Pacific Ocean Subrealm: Malay Archipelago (A), northeastern Asia (B), Ogasawara Islands (C), Polynesia/Micronesia 
(D), northern Australia (E), and eastern Australia (F).
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Samoa, Wallis and Futuna, and Fiji. The other three primary 
species are all long-range, predominantly island specialists, with 
G. tetragonon the only species to span essentially the entire breadth 
of  the Indian Ocean and Western Pacific subrealms. Additional 
species found on the western margins of  this subregion (par-
ticularly as one moves closer to the larger islands of  Indonesia, 
Papua New Guinea, and the Philippines) include A. triangularis,  
G. jocelynae, and Tubuca coarctata.

Australia Superprovince

Although clearly part of  the greater Western Pacific subrealm, 
Australia almost deserves an entire unit of  its own, thus designated 
the only superprovince in this treatment. It has two distinct prov-
inces, containing nine and eleven species, respectively, with only 
three species overlapping both provinces. More importantly, of  the 
17 species found in Australia, eight are endemic to the continent, 
with another three mostly restricted to the continent.

Northern Australia Province. This Australian province includes 
Western Australia, the Northern Territory, and the north coast of  
Queensland west of  the of  Cape York Peninsula/Torres Strait. This 
zoogeographical region was discussed by Crane (1975) and von 
Hagen & Jones (1989), who referred to it as the Dampierian div-
ision/province after the terminology of  Hedley (1904). The prov-
ince contains nine species: four endemic to the province: Gelasimus 
dampieri (Crane, 1975), Tubuca capricornis (Crane, 1975), T.  elegans 
(George & Jones, 1982), and T. hirsutimanus (George & Jones, 1982); 
three endemic to Australia: T.  polita (Crane, 1975), T.  seismella 
(Crane, 1975), and T. signata (Hess, 1865); and two primarily found 
in this province but also observed in southern Indonesia: Austruca 
mjoebergi (Rathbun, 1924) and T. flammula. Although never found on 
the mainland, A.  triangularis has been observed on Melville Island 
just off the coast near Darwin, Northern Territory.

Eastern Australia Province. This Australian subregion includes 
Queensland east of  the Cape York Peninsula/Torres Strait and 
the northern part of  New South Wales. This province was dis-
cussed by Crane (1975) and von Hagen & Jones (1989), who 
referred to it as the Solanderian division/province after the ter-
minology of  Hedley (1904), a terminology not followed here as, 
strictly speaking, Solanderian only refers to the Queensland por-
tion of  the province. The species in this subregion include one en-
demic to the subregion: Tubuca longidigitum (Kingsley, 1880); three 
endemic to Australia: T. polita, T. seismella, and T. signata; Gelasimus 
vomeris (McNeill, 1920) (mostly confined to Australia, but also 
found in New Caledonia and possibly New Guinea), and six add-
itional species also found well beyond Australia: Austruca  perplexa, 
A.  triangularis, G.  tetragonon, Paraleptuca crassipes, T.  coarctata, and 
T. dussumieri. Unlike the largely distinct species assemblage of  the 
Northern Australia subregion, this subregion shows substantial 
overlap with the island regions to the north and east. Crane (1975) 
included New Caledonia as part of  this subregion (likely due to 
the presence of  G.  vomeris), although it is here considered more 
of  a transitional edge between Eastern Australia and the Malay 
Archipelago provinces.

This central domain of  this subregion is eastern Queensland. 
Only a few of  the species extend southward into the more tem-
perate New South Wales (to about Sydney). Like the Pacific coast 
of  South America, this southern extension might be viewed as a 
temperate subprovince but lacks the unique characteristics that 
would lead one to view it as an independent unit.

DISCUSSION

The regions and results described herein are only as good as 
the underlying data and, as with any organism, there are sev-
eral reasons why these range data may contain inaccuracies. One 

obvious problem is the potential inaccuracy of  species identifica-
tions. Records for a given location may use a variety of  different 
names for the same species or fail to recognize similar species 
as separate entities. While efforts have been followed to correct 
for this (e.g., Rosenberg, 2014), these corrections are often based 
on underlying assumptions about species distributions that may 
simply be wrong. Not only does this lead to more vague defin-
itions of  boundaries between neighboring provinces and transi-
tional zones, but a handful of  locations known to contain fiddler 
crabs were left out of  specific provinces when the species assem-
blages were clearly ambiguous. For example, the literature on 
the Andaman and Nicobar Islands includes (both directly and 
indirectly) at least twenty different specific names (used in about 
three times as many binomial and trinomial combinations and 
spellings) for the fiddler crabs present on these islands (Heller, 
1865; Kingsley, 1880; Alcock, 1900; Pesta, 1911, 1913; McNeill, 
1920; Sankarankutty, 1961; Tikader & Das, 1985; Tikader et  al., 
1986; Das & Dev Roy, 1989; Bairagi, 1995; Dev Roy & Das, 2000; 
Das, 2001; Dev Roy & Nandi, 2012). Our current best estimate of  
the species located on the islands is five: Austruca annulipes, Gelasimus 
tetragonon, G. vocans, Tubuca alcocki, and T. paradussumieri. If  these five 
are correct, the islands would be included as part of  the transition 
zone between the Indian and Pacific oceans. It would be entirely 
reasonable, however, to suspect that the species being referred to 
as G. vocans is actually G. hesperiae, while the two Tubuca identified 
on the islands might both belong to T.  alcocki. If  both of  these 
assumptions were to be the case, these islands would instead be 
viewed as part of  the Indian Subcontinent province.

Another underlying assumption of  these data and the region-
alization treatment as a whole is that species ranges remain static 
over time. The only records available for many areas are decades 
(or even a century or more) out of  date. Even if  these records were 
completely accurate at the time of  reporting (assuming easily and 
accurately transferable taxonomic concepts), there is no guarantee 
they still represent the current species ranges. We can be reason-
ably certain that the ranges of  some species have likely changed 
over roughly the three centuries elapsed since some of  the reports; 
at least four examples of  recent range expansion into previously 
unoccupied areas have been documented in just the past decade 
(Johnson, 2014; Peer et  al., 2015; Peer et  al., 2018; Rosenberg, 
2018; Truchet et al., 2019), and this does not consider habitat loss 
(or recovery) in many coastal wetlands around the world. Similarly, 
even if  the regionalization treatment presented here is perfectly 
accurate today, there is no guarantee it will still be so at any fu-
ture date, particularly as ocean temperatures and currents are af-
fected by changes in global climate (Sadowski et  al., 2018). This 
work thus represents a snapshot in time for future comparison and 
contrast, rather than a finished, static product.

A third general issue with the underlying data is that species 
ranges are generally presented in a binary presence/absence 
framework, perhaps with seasonal modifications for migratory ani-
mals. While certainly the simplest way to conceive a geographical 
range, a binary system fails to accurately represent the fluidity and 
uncertainty of  ranges, particularly on marginal areas. Relatively 
few species have ranges with true static edges that can be tied to a 
clearly defined environmental barrier. Rather than strict presence/
absence, species ranges would more accurately be described via 
spatial probability density functions that illustrate the likelihood 
of  finding a species in a particular area (see Royle et  al., 2012; 
Fleming & Calabrese, 2017). This would also allow for greater ac-
curacy in depicting patchy distributions of  high or low likelihood 
of  local occurrence within the centers of  overall ranges.

This study does not reveal anything that had not already been 
reported with respect to ranges of  individual species, but it does 
highlight some of  the species with more unusual ranges. Afruca 
tangeri has often been considered unusual given its large latitudinal 
range (~50°) across the west coast of  Africa (Crane, 1975), but 
over a dozen species have similar, if  not larger latitudinal extents. 
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What makes A.  tangeri particularly noteworthy is that it is strictly 
allopatric over that entire range.

Of  high interest is the species with the largest longitudinal 
range of  fiddler crabs, Gelasimus tetragonon. This species has long 
been recognized as among a handful with unusually large ranges, 
but one of  the outcomes of  taxonomic revision over the previous 
four decades has been the fractionation of  most of  these “long-
ranging” species into separate species. Although “Uca vocans” sensu 
Crane, 1975 and “Uca lactea” sensu Crane, 1975 both contained 
recognized subspecies (six and four, respectively), the recognition 
of  these now as seven and eight distinct species (the subgenera 
Gelasimus (Gelasimus) and Austruca (Austruca), respectively) drastically 
changes and limits the overall distribution of  individual species. 
Only G.  tetragonon remains unchanged across its entire range, with 
limited genetic comparison (Shih et al., 2016b) revealing little diver-
gence among distant geographic locations (Madagascar, Taiwan, 
and French Polynesia), particularly relative to other cryptic species 
that have been discovered in recent years (Shih et al., 2009, 2019; 
Naderloo et al., 2016). The longitudinal range of  G. tetragonon covers 
almost 193°, between two-thirds to double that of  the next two 
closest species: Paraleptuca crassipes and Austruca perplexa. All three 
species have only in common a wide distribution throughout the 
islands of  the western and central Pacific Ocean. G. tetragonon is un-
usual in persisting across the entire Indian Ocean as well. Although 
occasionally found in patches along continental coasts, all three 
species appear to be something of  island specialists. What allows 
G. tetragonon to maintain genetic cohesion over so long wide a range, 
whereas other species living on the same islands do not, remains 
unknown. As geneflow in fiddler crabs is basically mediated by 
larval dispersal (Wieman et  al., 2014; Peer et  al., 2018), some un-
usual aspect of  either the life history, behavior, or morphology is 
likely the cause. Perhaps G.  tetragonon has an unusually long larval 
developmental period; most studied species of  fiddler crabs have 
larval periods of  two to four weeks (Rabalais & Cameron, 1983). 
Perhaps the larvae are prone to moving into deeper water with 
stronger currents. An alternative hypothesis is that the apparent 
range is an artifact of  limited genetic markers used in previous 
studies and broader genetic surveys will reveal cryptic species with 
greater genetic divergence than currently reported.

SUPPLEMENTARY MATERIAL

Supplementary material is available at Journal of  Crustacean 
Biology online.

Supplementary material maps. Geographical distribution of  the 
105 species of  fiddler crabs.
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