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ABSTRACT

Phylogenetic trees from multiple genes can be obtained in two fundamentally

different ways. In one, gene sequences are concatenated into a super-gene alignment, which is then
analyzed to generate the species tree. In the other, phylogenies are inferred separately from each
gene, and a consensus of these gene phylogenies is used to represent the species tree. Here, we have
compared these two approaches by means of computer simulation, using 448 parameter sets,
including evolutionary rate, sequence length, base composition, and transition/transversion rate
bias. In these simulations, we emphasized a worst-case scenario analysis in which 100 replicate
datasets for each evolutionary parameter set (gene) were generated, and the replicate dataset that
produced a tree topology showing the largest number of phylogenetic errors was selected to
represent that parameter set. Both randomly selected and worst-case replicates were utilized to
compare the consensus and concatenation approaches primarily using the neighbor-joining (NJ)
method. We find that the concatenation approach yields more accurate trees, even when the
sequences concatenated have evolved with very different substitution patterns and no attempts are
made to accommodate these differences while inferring phylogenies. These results appear to hold
true for parsimony and likelihood methods as well. The concatenation approach shows >95%
accuracy with only 10 genes. However, this gain in accuracy is sometimes accompanied by
reinforcement of certain systematic biases, resulting in spuriously high bootstrap support for
incorrect partitions, whether we employ site, gene, or a combined bootstrap resampling approach.
Therefore, it will be prudent to report the number of individual genes supporting an inferred clade in
the concatenated sequence tree, in addition to the bootstrap support. JJ. Exp. Zool.(Mol. Dev. Evol.)
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INTRODUCTION

Owing to the rapid advances in DNA sequen-
cing, a considerable amount of sequence data is
now available to molecular systematists for infer-
ring the evolutionary history of species. Conse-
quently, multiple gene and genome sequence
datasets can now be used to reconstruct more
robust evolutionary relationships (e.g., Delsuc
et al., 2003; Hoofer et al., 2003; Teeling et al.,
2003; Hedges et al., 2004; Wolf et al., 2004). There
are many ways of inferring phylogenetic trees
from multiple genes for the same set of species (de
Queiroz et al., ’95; Huelsenbeck et al., '96; Yang,
’96; Nei et al., 2001; Suchard et al., 2003), but two
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fundamentally different ways are considered most
often. In one, phylogenetic reconstruction is done
after the gene sequences are concatenated head-
to-tail to form a super-gene alignment—the
concatenation (Ct) approach. In the other, phylo-
genies are inferred separately for each gene and
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the resulting gene trees are used to generate a
consensus phylogeny (the Cn approach).

The Ct approach has been used for its presumed
statistical advantages: greater phylogenetic accu-
racy conferred by the increased sample size
(number of sites) for the given set of taxa.
This increased sample size works in different
ways towards improving phylogenetic accuracy
(e.g., Barrett et al., '91). For example, Olmstead
and Sweere ('94) found that combining data
from any two out of three different molecular
datasets produced a more resolved phylogeny
than when a single gene was used (also see
Rokas et al.,, 2003). Today, many multigene
studies routinely use the concatenation approach
(e.g., Amrine-Madsen et al., 2003; Delsuc et al.,
2003; Hoofer et al., 2003; Rokas et al., 2003;
Teeling et al., 2003; Hedges et al., 2004; Wolf et al.,
2004).

The Cn approach, on the other hand, sum-
marizes congruence among individual gene trees
and produces high resolution in the branching
pattern only when there is at least a majority
consensus among the different data sets. Thus, it
gives a ‘“‘conservative’ or ‘‘safe’’ estimate of the
phylogeny (Hillis, ’87). The argument in favor of
the Cn approach includes the fact that it accounts
for extensive differences in evolutionary rates and
substitution patterns among genes in a gene-
specific manner (Bull et al., ’93; de Queiroz, ’93;
Rodrigo et al., ’93; Huelsenbeck et al., ’94). While
methods have now been developed for modeling
different substitution parameters onto subsets of
the concatenated sequence set as part of a
phylogenetic analysis (e.g., Yang, ’96), most
investigators continue to simply concatenate se-
quences and apply a single substitution model to
the entire alignment (e.g., Rokas et al., 2003;
Hedges et al., 2004; Wolf et al., 2004).

Interestingly, there have even been suggestions
that neither the Ct nor the Cn approach should be
used in case individual gene phylogenies are not
identical (e.g., Bull et al., ’93; de Queiroz et al., ’95).

To resolve some of these issues, we conducted a
computer simulation study to examine the relative
merits of the Ct and Cr approaches, using
biologically realistic evolutionary parameters ob-
tained from a set of 448 mammalian genes for
which extensive data exists in the public databases
(see Rosenberg and Kumar, 2003). In this study,
we have particularly focused on the comparison
between the Ct and Cn approaches for the case
where individual gene trees resolve the phylogeny
poorly. We examined the relative merits of the two

approaches principally using the neighbor-joining
(NJ) method of phylogenetic inference (Saitou and
Nei, ’87).

MATERIALS AND METHODS

Computer simulations to generate datasets

Figure 1 shows the model tree topology with
relative branch lengths selected for computer
simulations. This phylogeny is based on an
independent analysis of 66 mammalian species
using a variety of methods for phylogenetic
analysis (Eizirik et al., 2001; Murphy et al., 2001;
Rosenberg and Kumar, 2003). This tree topology
and relative branch lengths were used to generate
sequence data by computer simulations using 448
sets of realistic evolutionary parameters available
from Rosenberg and Kumar (2003). In brief,
Rosenberg and Kumar (2003) obtained all avail-
able mammalian DNA sequences for 448 nuclear
genes from the HOVERGEN database (Duret
et al., ’94). The average base frequencies and the
average number of codons were estimated for each
gene and the third codon positions in these
sequences were used to estimate the mean evolu-
tionary rate (r) and the transition-transversion
rate ratio (x) for a given gene; see Rosenberg and
Kumar (2003) for details and distribution of
evolutionary parameters. For each set of evolu-
tionary parameters (448 different sets), the branch
lengths of the model tree were estimated using the
corresponding evolutionary rate and 100 replicate
datasets were generated under the HKY model of
nucleotide substitution. This yielded a total of
44,800 datasets.

Phylogenetic analysis

The neighbor-joining (NJ) method of phyloge-
netic inference (Saitou and Nei, ’87) was used with
the Jukes—Cantor (JC) (°69) and Tamura—Nei
(TN) (°93) methods of estimating pairwise dis-
tances. Phylogenetic analysis was carried out
using PAUP* 4.0b10 (Swofford, 2001). For a given
dataset (whether containing an alignment of one
gene or the concatenation of multiple genes), a
single model of nucleotide substitution was used in
the phylogenetic analysis and no attempts were
made to model differences in evolutionary para-
meters among genes. This was done to ensure that
our procedures were similar to the approach
employed in many empirical studies. Finally, the
NJ method was the primary focus of analysis
because it is known for its speed and efficiency in
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The 66-taxa model tree used in computer simulations (Eizirik et al., 2001; Murphy et al., 2001; Rosenberg and

Kumar, 2003). All branches are drawn to relative scale, and each clade is identified by a number.

inferring small as well as large phylogenies
(Kumar and Gadagkar, 2000; Rosenberg and
Kumar, 2001; Tamura et al., 2004), although some
phylogenetic analyses were also conducted using
the maximum parsimony and maximum likelihood
methods (see Table 1 for a description) in order to
assess the generality of the conclusions reached
from the NdJ analysis.

Assessing the accuracy of the inferred
phylogeny

The accuracy of the phylogenetic trees inferred
was measured by the percentage of clades recon-
structed correctly (Pc). This was obtained by Pc =
100 [1 — dt/(2m — 6)], where dr is the topological
distance between the inferred and model trees and
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TABLE 1. Change in phylogenetic accuracy when a gene sequence is concatenated to an existing gene’

Worst-case scenario

Random-case scenario

Method Overall Poorer gene is added Overall Poorer gene is added
NJ-JC 96 (19) 91 (9) 89 (9) 82 (5)
NJ TN 98 (26) 95 (12) 84 (9) 75 (4)
MP? 98 (31) 97 (21) 74 (7) 61 (3)
ML? 97 17)* 93 (9)* 86 (11)° 74 (3)°

Note: All comparisons are made with the randomly chosen intial gene. “Poorer gene is added” indicates the performance when the tree from the

added gene contained more errors than the tree from the intial gene.

The numbers in the columns refer to the percentage of multigene sets (from 10,000 trials) that showed improved accuracy after concatenation, with
the average amount of improvement (change in P¢) over all trials shown in parentheses in each case. Pc=100 [1-dy/(2m—6)], where dy is the topolo-
gical distance between the inferred and model trees and m is the number of sequences in the phylogeny (see text).

2MP analyses were done using heuristic searches with nearest neighbor interchange (NNI) branch swapping, with the initial tree obtained by a

stepwise addition procedure. All sites were uniformly weighted.

3For the ML method, a heuristic search with NNI branch swapping was conducted (NJ tree as the initial tree) and the HKY model of nucleotide
substitutuion was used. (In the case of MP and ML analyses, a 50 percent majority-rule consensus tree was obtained when there were multiple

equally parsimonious or equally likely trees for a given analysis).
“Based on 658 trials.
Based on 207 trials.

m is the number of sequences in the phylogeny
(Robinson and Foulds, ’81; Penny and Hendy,
’85). All comparisons were made between
the inferred trees and the model tree given in
Figure 1.

Construction of multigene datasets

For comparing the performance of the Ct and
Cn approaches, 100 simulated datasets for each of
448 sets of evolutionary parameters (genes) were
available (see above). In the construction of
multigene datasets, we needed to select one
dataset from the 100 simulation replicate datasets
for each gene (parameter set). This selection was
done in two ways. In one (the random-case
scenario, RS), all analyses were conducted using
randomly chosen replicates to represent individual
genes. In the other, we specifically selected the
simulation replicate for a given gene that pro-
duced a phylogeny with the lowest Pg, i.e., with
the highest number of incorrect clades when
compared to the model tree. This is referred to
as the worst-case scenario (WS). Throughout this
paper the RS and WS simulation replicates will
also be referred to as RS and WS genes.

The Ct approach consisted of a simple head-to-
tail concatenation of the gene sequences, which
was followed by phylogenetic analysis. In the Cn
approach, individual gene trees were first inferred
and then the majority-rule consensus tree was
generated to represent the multigene phylogeny.
We used the “LE-50" option in PAUP* to fully
resolve all multifurcations in this consensus tree.

We preferred using the majority rule consensus
approach for combining unrooted gene trees
because other applicable approaches (e.g., strict
consensus) would yield many polytomies, which
would make it difficult to compare consensus and
concatenation approaches.

RESULTS

Concatenating two-gene datasets

First, we investigated if adding a single gene to
an existing one improves the accuracy of phyloge-
netic reconstruction. Results in Table 1 (in the
“Overall” columns) show that concatenated align-
ments containing two genes, in general, produced
more accurate phylogenies than those inferred
from the single, initial gene (>96% for WS genes
and >74% for RS genes). The percentage of
correctly inferred clades per tree improved after
concatenation by 17-31% for WS genes and 7-11%
for RS genes. Greater improvement in accuracy is
seen for NJ-TN as compared to NJ-JC. This could
be attributed to at least two facts. First, the initial
NJ-TN trees are known to contain more errors
than NJ-JC [see Rosenberg and Kumar (2001)
and Nei and Kumar (2000)]. This means that
there is more room for improvement in the NJ-TN
case (see also the difference in the amount of
improvement in WS and RS replicates for the
same tree making method). Second, the concate-
nation procedure leads to longer sequences and
thus reduced variance in the distance estimates.
Because the reduction in variance occurs for both
TN and JC distances, the absolute amount of
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reduction in variance of TN distances is much
larger than that for JC distances, as the multi-
parameter-based multiple-hit correction in TN
distance leads to a manifold higher variance.

We also examined whether phylogenetic accu-
racy decreases if a worse performing gene is added
to the initial gene. In Table 1 the column ‘“Poorer
gene is added” provides the percentage of con-
catenated datasets in which the Ct tree was more
accurate, even in cases where the tree from the
added gene had more errors than the tree from the
initial gene. When the WS genes were used, a vast
majority of cases (>91%) showed improvement in
phylogenetic accuracy, with a minimum improve-
ment of 9%. The improvement is slightly lower for
the RS genes, partly because there was much less
room for improvement as random, rather than
worst-performing, replicates were used.

We investigated the effect of the relative
accuracy of the added gene on the improvement
(or decline) in the correctness of the inferred Ct-
phylogeny, as compared to the accuracy of the
initial gene tree. Figure 2 shows the relationship
between the difference in accuracy of the initial

100 ~

Improvement in Ct tree (AP¢ ¢,)

75 100
Relative accuracy of added gene (AP,)

Fig. 2. Effect of the accuracy of the tree from the added
gene on the performance of the Ct tree (relative to the
accuracy of the tree from the initial gene in both cases). The
percent difference in Pc (=100 [1 — dt/(2m — 6)], where dr is
the topological distance between the inferred and model trees
and m is the number of sequences in the phylogeny; see text)
between the tree from the added gene and the tree from the
initial gene (AP¢) is plotted on the X axis, and the percent
difference in P¢ between the Ct¢ tree and the tree from the
initial gene (AP¢ ) is plotted on the Y axis. Negative values
for AP¢ indicate cases in which the tree from the added gene
had more errors than that from the initial gene. A total of
10,000 trials were carried out, and each plotted point
represents an average from 100 trials. All phylogenetic
analyses were done using NJ-TN. The filled and open circles
refer to results from WS (simulation replicates with the
largest phylogenetic error) and RS (randomly chosen simula-
tion replicates), respectively.

and the added gene trees (APc = Pcaddea —
P initia) With the extent of improvement in the
Ct tree (APcc; = Pc,c; — Pcinitia)- Each point in
Fig. 2 is an average of 100 gene pairs, and these
averages are arranged in the order of increasing
percent difference in AP (difference in accuracy
between the added and initial gene trees). Nega-
tive values indicate cases in which the NJ-TN tree
for the added gene had more errors than those
observed in the initial gene tree. It is clear from
Fig. 2 that even if the correct branches in the tree
from the added gene are only 50% of that found in
the initial gene tree, the concatenation of these
genes still (on average) leads to improvement in
phylogenetic accuracy. As expected, the improve-
ment in the Ct tree increases as the accuracy of the
added gene tree increases. This is true in both WS
and RS cases, although, as seen earlier (Table 1)
the extent of improvement is higher in the case of
the WS genes.

These results clearly show that concatenating a
second gene improves the accuracy of phylogenetic
inference substantially over that from the initial
gene. This is in spite of the fact that we simply
concatenated the sequences without making an
attempt to accommodate gene-specific differences
in substitution pattern during phylogenetic in-
ference. Our investigations into the effect of the
observed differences in substitution parameters
(between the genes that were concatenated) on the
change in the phylogenetic accuracy of the Ct tree
over the initial gene tree, did not yield any
significant patterns, except that, as expected, the
addition of a longer gene (sequence) produced
greater improvement (results not shown). We did
not apply the Cn approach to these two-gene
datasets, as each clade will occur with either 100%
or 50% frequency in the consensus tree, making it
impossible to generate an unequivocal Crn phylo-
geny in most cases.

Progressive addition of genes

Next, we investigated the effect of a progressive
addition of genes on phylogenetic accuracy when
using Ct and Cn approaches. For this purpose, we
started with six randomly chosen genes and added
other randomly chosen genes one-by-one until the
concatenated dataset contained 20 genes. This
procedure was repeated five times and the average
Pc computed for both WS and RS datasets.
Figure 3 shows the results for NJ-TN trees. It is
clear that an increase in the number of genes
improves the accuracy of phylogenetic inference
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Fig. 3. Effect of a progressive addition of genes on the
accuracy of the inferred species tree. A randomly chosen
simulation replicate was progressively added to an initial set
of six randomly chosen genes until the dataset contained a
total of 20 genes. With each addition, the analysis was done
using the concatenation (C¢) and consensus (Cn) approaches.
For the trees inferred using the Ct approach, the P¢ values (P¢
= 100 [1 — dr/(2m — 6)], where dr is the topological distance
between the inferred and model trees and m is the number of
sequences in the phylogeny; see text) show the percent
branches inferred correctly in the NJ-TN tree (neighbor-
joining tree with Tamura-Nei distances). For the Cn
approach, the P¢ value was computed from the majority-rule
consensus tree that was constructed such that partitions with
frequency <50% were also retained to obtain a fully resolved
tree if they were not in conflict with the rest of the tree
(“LE50” option in PAUP*). Each PC value plotted is the
average from five rounds of progressive gene addition. Results
are shown for the worst-case (WS) genes and random-case
(RS) genes.

regardless of the approach used (Cn or Ct) or the
type of dataset available (WS or RS). Figure 3 also
shows that, in general, the Ct approach consis-
tently produced more accurate trees than the Cn
approach, within each scenario (WS or RS). The
extent of improvement with gene addition is
different for the Cn and Ct approaches as it
depends upon whether RS or WS genes are used.
In the Cn—WS case (open circles), ~80% partitions
were inferred correctly with six genes in the
dataset. This increased rapidly and reached a
plateau at ~86% but needed more than 20 genes
(between 20 and 448 genes) to reach an accuracy
of around 94%. In Ct~WS case (open triangles), the
level of accuracy was more than 90% with six
genes and it leveled off at ~97% when only 10-20
genes were used. Interestingly, this level of
accuracy remained unchanged even when all 448
genes were concatenated. The Ct approach was
also better for the analysis of RS datasets, where it
reached 100% accuracy with <15 genes, whereas
the Cn approach required >20 genes (Fig. 3).

In the WS case, neither approach (C¢ or Cn)
produced the correct tree even when all 448 genes
were used. The tree inferred using the Ct
approach was missing two correct clades, whereas
the Cn approach produced a tree in which four
correct clades were missing. Two errors (in nodes
#33 and #61, both of which are shallow nodes
with two taxa each) were common to both
approaches, whereas the Cn approach produced
two additional errors concerning deeper nodes
with multiple taxa (#50 and #56). Figure 4 shows
the percentage of gene trees in which each of the
clades in the true tree was recovered in the WS
(above branches) and RS (below branches) data-
sets, when the Cn approach was used. These
numbers indicate the number of gene trees in
which the given correct phylogenetic partition was
observed. In a consensus gene tree, this may be
referred to as the gene-support-frequency (GSF).
In Cn-WS analysis, GSF is 26%, 11%, 27%, and
21%, for clades #33, #50, #56, and #61, respec-
tively. These four clades also show relatively low
GSF in Cn—-RS analysis: 50%, 72%, 47%, and 44%,
respectively.

DISCUSSION

Our results indicate that the use of multiple
genes produces more accurate phylogenies
whether we use consensus or concatenation
approaches when using the NJ method. We find
that the concatenation approach produces a great-
er increase in accuracy as compared to the
consensus approach. Table 1 also contains results
from limited Maximum Parsimony (MP) and
Maximum Likelihood (ML) analysis, where the
trees resulting from concatenation of two genes
are compared to the tree from the single initial
gene. They are consistent with those obtained
using the NJ method. For instance, adding a gene
to a one-gene initial dataset increases the accuracy
by ~10% for MP and ML analyses of the WS
genes. (Of course, there are differences in phylo-
genetic accuracy of NJ-JC, NJ-TN, MP, and ML
methods; see Rosenberg and Kumar (2001) and
Nei and Kumar (2000) for discussion.)

Part of the increase in accuracy afforded by
concatenating multiple genes is contributed by the
fact that many branches in individual gene trees
may have experienced no substitutions (or only a
few), due to reasons such as low evolutionary rate
for the gene, short elapsed time after divergence,
and small gene sequences, resulting in multi-
furcating internal branches. These gene-specific



70

27

S.R. GADAGKAR ET AL.

39

99

81 700

90 | 93

96

23
45

25

57

0
100

98

17

75
- —
|

69
100 7372
100

100

96

51

50

47

77

.
60

92
e

90

64

L0
100
53
74—

1"

60

100
100

47
21

83

83

100
To0 L

98
84 100
87 [ 90
94

90
98

49

49

99

26 [:::
50

81 | —

90 I

98
99 [100
37 1100
60

72

56
84

75

27 [:::
56

59 —

98

I
—

83

24
54

23

99

43

I

97
L g
99 | 99
100

25 62

i
100

45

72 —

39

98

87 | I

100
90—
i

82
90

98

87

—
100

66
90 [ 80
44 94
63

83

21
44
100 [::::
99

—

Fig. 4. Majority rule consensus tree from 448 gene trees, each obtained using the neighbor-joining method with Tamura-Nei
distances (NJ-TN). Percent frequency with which individual clades were inferred for worst-case (above branch) and random-
case (below branch) scenarios are shown. For incorrectly inferred partitions, percent frequencies are shown in bold. The
majority-rule consensus tree was constructed using PAUP™ using the LE50 option, which also retains all compatible partitions

I

with frequency <50%, if they are not in conflict with the rest of the tree.

Megaptera
Tursiops
Hippoporarmus
Tragelaphus
Okapia

Sus

Lama
Ceratotherium
Tapirus

FEqguus

Felis
Leopardus
Panthera
Canis

Ursus

Manis
Artibeus
Nycteris
Preropus
Rousetrus
Erinaceus
Sorex
Asioscalops
Condylura
Cavia
Hydrochoeris
Agouti
Erethizon
Myocastor
Dinomys
Hystrix
Heterocephalus
Mus

Rarrtus
Cricetus
Pedetes
Castor
Dipodomys
Tamias

Mus cardinus
Svyvilvilagus
Ochotona
Hylobates
Homo
Macaca
Ateles
Callimico
Cynocephalus
Lemur

Tarsius

Tupaia
Choloepus hoffinanrni
Choloepus didactylus
Tamandua

My rmechophaga
Fuphractus
Chaetophractus
Trichechus
Loxodonta
Procavia
Echinops
Orycteropus
Macroscelides
FElephantulus
Didelphis
Macropus



ACCURACY OF MULTIGENE PHYLOGENIES 71

polytomies are not resolvable (see Kumar and
Gadagkar, 2000) using a single gene, even if the
species tree is truly bifurcating. Adding genes to a
dataset by concatenation increases the absolute
number of evolutionary changes on such branches
and makes it possible to infer them with greater
accuracy. Furthermore, an overall increase in
sequence length would lead to smaller variances
for evolutionary distances and other parameters in
model based methods (e.g., NJ and ML). There is
evidence in the literature that this may be the case
when multiple gene sequence alignments produce
trees with higher bootstrap support (e.g., Barrett
et al., ’91; Doyle et al., ’94; Olmstead and Sweere,
’94; Baldauf, ’99).

The multigene concatenated datasets performed
better despite the fact that we did not make an
effort to account for large variations in evolu-
tionary rate, sequence length, transition-trans-
version rate ratio, and base composition (G+C
content) among the sequences concatenated. This
indicates that the increase in phylogenetic signal
due to the concatenation is much higher than any
bias introduced by using a single substitution
pattern applied to the entire concatenated se-
quence. It is possible that the use of gene-specific
substitution parameters (Yang, ’96) may improve
the accuracy of concatenated sequence analysis,
but the Ct approach produces more accurate
phylogenies than the Cn approach even when they
are not used (Fig. 3). This observation ameliorates
some concerns such as the following: because
different genes are likely to give independent
estimates of the phylogeny, it is unlikely that the
same (wrong) phylogeny will be supported by all
the genes when analyzed individually, whereas if
they are concatenated, some genes may dominate
and sweep the signal (e.g., Doyle, '92; de Queiroz,
’93; Miyamoto and Fitch, ’95). Sometimes the
congruence of datasets in terms of the phyloge-
netic trees produced is advocated prior to data
combination (e.g., Bull et al., ’93; Rodrigo et al.,
’93; de Queiroz et al., ’95). In our studies, we did
not test for congruence among the genes that were
combined but still saw significant improvements,
especially with WS genes that individually pro-
duced vastly different trees. Therefore, it may be
better not to discard genes producing incongruent
phylogenies, as they may provide additional
information for resolving some short branches
(also see Shevchuk and Allard, 2001; Rokas et al.,
2003). On the other hand, if individual gene trees
contain systematic errors that may result in
similar (but wrong) phylogenies, then the use of

congruent phylogenies may actually result in a
more severe reinforcement of this error.
Recently, Rokas et al. (2003) conducted an
empirical study with seven species of Saccharo-
myces and an outgroup, and showed that con-
catenated datasets with subsets of 106 genes
produced the same tree as the concatenated set
of all 106 genes [but see Phillips et al. (2004) for a
different treatment of the same dataset]. Rokas
et al. (2003) suggested that a set of only ~ 20 genes
is needed to be sampled to obtain a species
phylogeny that would be similar to that obtained
with a much larger number of genes. Their results
are consistent with ours (see Fig. 3), except for one
difference. Rokas et al. (2003) assumed that the
concatenation of all genes yielded the true phylo-
geny because different phylogenetic methods
produced the same tree, whereas our Ct analysis
of 448 WS genes resulted in an identical, but
incorrect, tree when different methods were used.
Hence, this assumption may not always hold. Our
results show that although the Ct approach is
better than the Cn approach, it is not perfect,
especially with WS datasets. We found that the Ct
analysis of WS datasets yielded a phylogenetic tree
with two true clades missing (#33, #61; Fig. 1) in
our simulation investigations. Instead, two other
(incorrect) clades appeared: Myocastor coypus
(nutria) and Echinops telfairi (the lesser hedgehog
tenrec) became basal to Dinomys branickii (pacar-
ena) and Orycteropus afer (aardvark), respectively,
rather than sister taxa (see clade #33 and #61 in
Fig. 1). The difficulty observed with correct
inference of clades #33 and #61 in WS simula-
tions also cannot be attributed to shortness of
their branch length because there are 10 other
internal branches with the same length. Also,
clades #33 and #61 do not stand out as the only
shallow clades of two taxa each, as other clades of
similar depth (#13 and #14) were inferred
correctly. This led us to explore the relationship
between the accuracy of reconstruction of an
internal branch in the tree and the lengths of
the neighboring branches relative to that of the
internal branch (see schematic in Fig. 5A). Figure
5B shows the proportion of gene trees in which
branches of various lengths (x) were inferred
correctly in the worst-case replicates. As expected,
the frequency of correct reconstruction is higher
for longer internal branches. The problem
branches (#33 and #61) belong to a set of 12
shortest internal branches in the tree, all of which
have an identical length of 3.71 substitutions per
gene (see Fig. 1). For these 12 branches, the
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Fig. 5. Accuracy of inference of individual branches in different gene trees as a function of their length (x) and the relative
lengths of their neighbors (a, b, ¢, d). (A) Schematic showing the definition of branch lengths x, a, b, ¢, d. Branches a and b were
defined such that a < b. When neighboring branches led to multitaxa subtrees (such as for branch #10), we computed the
branch length to be the average distance from that node to all the tip nodes in the given subtree. (B) Effect of the expected
internal branch length (x;; 1 < i < 63) on the accuracy of inferring the corresponding clade in gene trees. (C-F) Accuracy of
inferring the 12 shortest branch lengths as a function of the neighboring branch lengths a to d, respectively. All results were
obtained from trees inferred for the 448 worst-case simulation replicates (WS), using NJ-TN (neighbor-joining method with

Tamura-Nei distances).

influence of the lengths, a, b, ¢, and d, of the
neighboring branches on the accuracy of their
inference is shown, respectively, in panels C-F of
Fig. 5. It is clear that the longer the lengths a, b,
and ¢, as compared to x, the lower the probability
that the phylogenetic partition defined by branch
x will be inferred correctly. That is, an internal
branch may fail to be recovered when it is much
shorter than its neighboring branches (or the
average branch lengths of the different clusters).
In contrast, a larger value of d (ancestral branch)
translates into a higher accuracy.

In order to ascertain if the incorrect inference of
certain short branches was due to long (short)-
branch attraction (Felsenstein, ’78; Nei and
Kumar, 2000), we examined the relationship
between the percent difference between the

lengths @ and b and the accuracy of recovery of the
corresponding internal branches. Our analyses for
the 12 shortest branches showed a slight negative
relationship between the number of gene trees
that correctly recovered a given branch and the
difference between the lengths a and b for that
branch (not shown). We find that branches #33
and #61, which are the most difficult to infer, also
show the largest length difference between the
descendent taxa in the true tree (69% and 128%
for clades #33 and #61, respectively). It is
tempting to speculate that this is the reason for
the incorrect inference of these two clades, but
another branch (#9) where the descendent taxa
show a large (55%) difference does not suffer from
a similar problem. Furthermore, both of these
clades are inferred perfectly in the RS case.
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Our study shows additional evidence that the
concatenation approach is not necessarily a pana-
cea for the accurate recovery of the species tree.
This was revealed when we conducted a bootstrap
test by resampling sites in order to determine if
the two incorrectly inferred nodes (#33 and #61)
in the Ct tree of all the 448 WS genes represented
significant systematic errors (Felsenstein, ’85). If
the incorrect inferences made (instead of clades
#33 and #62) were by chance alone, then their
frequency in the bootstrap consensus tree is
expected to be low. (We refer to the frequency of
occurrence of a clade in the bootstrap replicate
tree as the bootstrap support frequency [BSF].)
Our results showed that the two correct clades
(#33 and #61) did not appear in any of the
bootstrap replicate tree, that is, BSF = 0% for
both clades. Instead, we found that the two
incorrect clades (that appeared instead) were
supported with increasingly higher BSF as the
number of genes concatenated increased, ulti-
mately reaching 100% for the case of 448 WS
genes. In fact, BSF for all branches in the Ct-WS
tree was 100%!

Recently, Nei et al. (2001) suggested that the
genes, rather than sites [as used in the original
proposal by Felsenstein (’85)], be used as the unit
of resampling in the bootstrap estimation. In our
study, we resampled 448 WS genes with replace-
ment and generated Ct trees for 100 bootstrap
replicates. Still, all branches (including the two
incorrect ones) were supported with a BSF =
100%. A more comprehensive bootstrap resam-
pling regime is to actually resample genes and to
then resample sites within each gene in order to
account for site as well as gene sampling errors.
This combined procedure also produced BSF =
100% for concatenation analysis of 448 WS genes.
These results are particularly disturbing because
the incorrect clades inferred (and supported with
BSF = 100%) were found in only 34% and 33%
individual gene trees, respectively, as compared to
the correct clades (#33 and #61), which appeared
in 26% and 21% gene trees. Therefore, it is clear
that weak phylogenetic signal can be substantially
reinforced when sequences are concatenated. Most
often, this signal amplification happens for the
correct partitions (see Fig. 4), but in some cases it
can also boost support for the erroneous infer-
ences.

In conclusion, a simple concatenation appears to
be better than consensus for phylogenetic recon-
struction when multigene data are available,
especially when the individual genes yield inaccu-

rate trees. However, neither approach may guar-
antee a completely accurate species phylogeny
even when a large number of genes are used,
apparently due to the effect of certain systematic
biases. Indeed, there is no magic number of genes
that, when concatenated, will yield the correct tree
in all instances, because addition of genes does not
add to the accuracy of the tree in the presence of
systematic biases. In the future, it will be
important to examine if these biases can be
overcome by using gene-specific patterns of sub-
stitution in the concatenation approach. However,
because these systematic errors can lead to very
high bootstrap values, we recommend that the
number of gene trees supporting a given partition
(gene support frequency, GSF) be presented along
with its bootstrap support frequency (BSF) to
guard against conveying spurious high confidence
in evolutionary inferences based on the analysis of
multiple genes.
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