Computational Evolutionary Biology & Bioinformatics

E-mail: msr@asu.edu
← Back to introduction
*EM-*index

### Example

### History

## References

The *EM-*index (Bihaari and Tripathi 2017) combines elements of the multidimensional *h-*index, the two-sided *h-*index, the iteratively weighted *h-*index, and the *e-*index. The *EM-*index begins by creating a vector (** E**) which is equivalent to the upper/excess half of the two-sided

where *E _{i}* and

Publications are ordered by number of citations, from highest to lowest. After each step, *E _{i}* is substracted from the citations of the top

Citations (C)_{i} | 42 | 36 | 14 | 11 | 9 | 9 | 3 | 2 | 2 | 2 | 1 | 1 | 1 | 0 | 0 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

Rank (i) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |

E_{1} = 6 | ||||||||||||||||

Adjusted Citations (C)_{i} | 36 | 30 | 8 | 5 | 3 | 3 | ||||||||||

Rank (i) | 1 | 2 | 3 | 4 | 5 | 6 | ||||||||||

E_{2} = 4 | ||||||||||||||||

Adjusted Citations (C)_{i} | 32 | 26 | 4 | 1 | ||||||||||||

Rank (i) | 1 | 2 | 3 | 4 | ||||||||||||

E_{3} = 3 | ||||||||||||||||

Adjusted Citations (C)_{i} | 29 | 23 | 1 | |||||||||||||

Rank (i) | 1 | 2 | 3 | |||||||||||||

E_{4} = 2 | ||||||||||||||||

Adjusted Citations (C)_{i} | 27 | 21 | ||||||||||||||

Rank (i) | 1 | 2 | ||||||||||||||

E_{5} = 2 | ||||||||||||||||

Adjusted Citations (C)_{i} | 25 | 19 | ||||||||||||||

Rank (i) | 1 | 2 | ||||||||||||||

E_{6} = 2 | ||||||||||||||||

Adjusted Citations (C)_{i} | 23 | 17 | ||||||||||||||

Rank (i) | 1 | 2 | ||||||||||||||

E_{7} = 2 | ||||||||||||||||

Adjusted Citations (C)_{i} | 21 | 15 | ||||||||||||||

Rank (i) | 1 | 2 | ||||||||||||||

E_{8} = 2 | ||||||||||||||||

Adjusted Citations (C)_{i} | 19 | 13 | ||||||||||||||

Rank (i) | 1 | 2 | ||||||||||||||

E_{9} = 2 | ||||||||||||||||

Adjusted Citations (C)_{i} | 17 | 11 | ||||||||||||||

Rank (i) | 1 | 2 | ||||||||||||||

E_{10} = 2 | ||||||||||||||||

Adjusted Citations (C)_{i} | 15 | 9 | ||||||||||||||

Rank (i) | 1 | 2 | ||||||||||||||

E_{11} = 2 | ||||||||||||||||

Adjusted Citations (C)_{i} | 13 | 7 | ||||||||||||||

Rank (i) | 1 | 2 | ||||||||||||||

E_{12} = 2 | ||||||||||||||||

Adjusted Citations (C)_{i} | 11 | 5 | ||||||||||||||

Rank (i) | 1 | 2 | ||||||||||||||

E_{13} = 2 | ||||||||||||||||

Adjusted Citations (C)_{i} | 9 | 3 | ||||||||||||||

Rank (i) | 1 | 2 | ||||||||||||||

E_{14} = 2 | ||||||||||||||||

Adjusted Citations (C)_{i} | 7 | 1 | ||||||||||||||

Rank (i) | 1 | 2 | ||||||||||||||

E_{15} = 1 |

The sum of the 15 *E* values is 36. The *EM-*index is the square-root of this sum, thus *EM* = 6.0000.

Year | EM |
---|---|

1997 | 1.0000 |

1998 | 1.7321 |

1999 | 2.8284 |

2000 | 3.1623 |

2001 | 6.0000 |

2002 | 6.8557 |

2003 | 7.4162 |

2004 | 7.7460 |

2005 | 8.7178 |

2006 | 9.8489 |

2007 | 10.6301 |

2008 | 11.5758 |

2009 | 12.6886 |

2010 | 14.2478 |

2011 | 15.1658 |

2012 | 15.4272 |

2013 | 15.8745 |

2014 | 16.5227 |

2015 | 17.1464 |

2016 | 17.7482 |

2017 | 18.2757 |

- Bihari, A., and S. Tripathi (2017) EM-index: A new measure to evaluate the scientific impact of scientists.
*Scientometrics*112(1):659–677.