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Increasing evidence suggests that urbanization is associated with higher 
mutation rates, which can affect the health and evolution of organisms 
that inhabit cities. Elevated pollution levels in urban areas can induce DNA 
damage, leading to de novo mutations. Studies on mutations induced 
by urban pollution are most prevalent in humans and microorganisms, 
whereas studies of non-human eukaryotes are rare, even though increased 
mutation rates have the potential to affect organisms and their populations 
in contemporary time. Our Perspective explores how higher mutation rates 
in urban environments could impact the fitness, ecology and evolution 
of populations. Most mutations will be neutral or deleterious, and higher 
mutation rates associated with elevated pollution in urban populations  
can increase the risk of cancer in humans and potentially other species.  
We highlight the potential for urban-driven increased deleterious 
mutational loads in some organisms, which could lead to a decline in 
population growth of a wide diversity of organisms. Although beneficial 
mutations are expected to be rare, we argue that higher mutation rates in 
urban areas could influence adaptive evolution, especially in organisms with 
short generation times. Finally, we explore avenues for future research to 
better understand the effects of urban-induced mutations on the fitness, 
ecology and evolution of city-dwelling organisms.

Mutation is the original source of all genetic variation. Despite its impor-
tance, variation in mutation rates is often overlooked or considered of 
negligible significance in empirical studies of ecology and evolution, 
particularly in eukaryotes1. Mutation rates can be influenced by the 
environment2,3 and can evolve through time4,5. Neglecting to consider 
mutation may be especially problematic in cities, where emerging 
evidence suggests that pollution elevates mutation rates6,7.

One of the most consistent differences between urban and 
non-urban environments that could influence mutation rates is chem-
ical pollution. Transportation, industry, wastewater management, 

home heating, landfills and pesticide application are all activities in 
urban areas commonly associated with elevated air, water and soil 
pollution8–10. Although less frequent in urban areas, nuclear plants, 
nuclear testing and warfare can also result in highly mutagenic ion-
izing radiation11. Studies on the mutagenic effects of radiation also 
provide general insight into how highly mutagenic pollutants can 
influence organisms in cities. Although pollution is not unique to 
urban areas, the concentration and diversity of pollutants are often 
highest in cities, exposing organisms to harmful stressors in unprec-
edented ways8–10.
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hydrocarbons (PAHs), nitrogen oxides (NOx), sulfur dioxide (SO2), 
carbon monoxide (CO) and various metal species (for example, Hg, 
Cu, Pb and Sn). These compounds can bind to particulate matter (PM), 
which can then be deposited in soil18,31–33. Soil can also become contami-
nated with genotoxicants from industrial by-products, manufacturing, 
mining and road salting30. Air pollutants, soil leaching, run-off and 
sewage all contribute to water pollution34, which can lead to elevated 
levels of pesticides35,36, polychlorinated biphenyls37, pharmaceutical 
products38–40 and microplastics30,41,42 in aquatic habitats.

Pollution in urban settings varies in both time and space in com-
plex ways. The levels and types of urban pollution have changed 
throughout the history of industrial and urban growth. For example, 
during the past 20 years, the level of PM2.5 (PM with diameters <2.5 µm) 
in Shanghai, China, has increased by over 200%, yet it decreased by 
nearly 30% in New York, USA, and remained consistently low in Mel-
bourne, Australia (Fig. 1). These changes through time are often influ-
enced by changes in governmental policies (for example, the United 
States’ Clean Air Act and the European Union’s Ambient Air Quality 
Directive) and technological change, such as conversion from leaded 
to unleaded fuels. Urban pollutants also vary spatially in their con-
centrations and composition (Fig. 1 insets). For example, industrial 
steel production often leads to some of the highest concentrations 
of PAHs43, whereas high vehicle traffic is typically associated with 
higher PM, ozone, CO and NOx (Table 1). Socio-economic variation 
among neighbourhoods often covaries with pollution levels, whereby 
poorer neighbourhoods are frequently in the most polluted areas, 
causing disparity in exposure to potentially harmful genotoxicants44,45. 
Non-urban areas also frequently experience pollution due to anthro-
pogenic activities, including resource extraction, agriculture, forestry 
and nuclear radiation. However, we focus on urban areas because they 
are the fastest-growing ecosystem on Earth, and they are consistently 
associated with elevated pollution made up of diverse mixtures of 
chemicals that potentially harm organisms including causing damage 
to DNA (genotoxicants) (Box 1).

The genotoxic effects of pollutants include chemical interac-
tions that form DNA adducts (chemicals that bind to DNA) and reac-
tive oxygen species that damage DNA (Box 1). When such damage is 
improperly repaired, it can cause small-scale and large-scale mutations. 
Small-scale mutations include single nucleotide substitutions and 
small insertions/deletions (indels). Large-scale mutations involve large 
indels, duplications, translocations, inversions and aneuploidy46–48. 

Urban chemical pollutants can cause physiological and genotoxic 
stress to organisms that may result in mutations. Such pollution is 
known to result in respiratory illnesses in humans12, reduced photo-
synthesis and cell damage in plants13, higher mortality in fishes and 
amphibians14, and decreased fledgling success in birds15. Exposure to 
some pollutants can damage DNA and induce de novo mutations (here-
after simply called ‘mutations’)16–19. Although carcinogenic pollutants 
are known to cause somatic mutations (mutations in non-reproductive 
germ cell tissue), the fitness effects of these mutations and the preva-
lence of pollution-induced germline mutations are poorly understood 
outside of laboratory settings. Moreover, whether urban-induced 
higher mutation rates lead to an increased number of deleterious 
mutations, population decline or accelerated adaptive evolution has 
not been previously considered (but see ref. 20).

Our goal is to provide a forward-looking Perspective on the poten-
tial for elevated mutation rates in cities to influence the ecology and 
evolution of populations. Studies of the effects of urbanization on evo-
lution have focused on genetic drift, gene flow and natural selection, 
and the potential for elevated mutation rates in cities to influence the 
ecology and evolution of populations is largely unexplored and of high 
priority for future research21–24. We begin by reviewing urban pollutants 
and the damage they cause to DNA. Next, we consider how pollution 
affects somatic and germline mutations and the potential importance 
of these mutations for ecology and evolution. Although urban pollution 
can affect all organisms in cities, most existing examples come from 
research on humans. We consider the effects of pollution on humans 
and non-human organisms throughout this Perspective, and we use 
the extensive literature on humans as a model to understand the wider 
ecological and evolutionary impacts for all organisms. Looking beyond 
humans is important because although cities reduce and homogenize 
species diversity, urban habitats still harbour substantial biodiver-
sity25–27, and many of these species in cities are of conservation concern 
or have fundamental ecosystem roles28. We end by discussing existing 
knowledge gaps and directions for future research.

Urban pollutants and damage to DNA
Air, water and soil in cities are consistently associated with a diverse 
mixture of pollutants (Table 1 and Box 1). The sources of most outdoor 
air pollutants in cities are combustion by-products from transpor-
tation, power generation, home heating/cooking and industry29,30. 
These by-products include pollutants such as polycyclic aromatic 

Table 1 | Common urban chemical mutagens and carcinogens

Pollutant Chemical species Sources Medium Refs.

PM PM2.5
PM10: inorganic ionic compounds, metal oxides, 
organic and elemental carbon

Combustion by-products from traffic and 
industrial emissions, residential heating 
and reactions between pollutants

Air 8,18

Volatile organic 
compounds

Aldehydes, ketones, aromatics and alkanes Household products, building materials 
and combustion sources

Air 18,132

PAHs Examples include benzo[a]pyrene, benzo[a]
anthracene, chrysene, benzo[b]fluoranthene, 
benzo[k]fluoranthene

Combustion by-products from industrial, 
residential and transport emissions

Air/water/soil 33,133–135

Sulfur oxides (SOx) SO2, sulfur trioxide (SO3) Fossil fuel combustion, other industrial 
processes

Air 8,18

CO – Fossil fuel combustion, transport 
emissions

Air 8,136

NOx Nitrous oxide (NO), nitrogen dioxide (NO2) Transport and industrial emissions Air 8,137,138

Pesticides Organophosphates, pyrethroids, carbamates, 
polychlorinated biphenyls, polybrominated 
biphenyls, persistent organic pollutants

Pesticide use in urban areas Water/soil 139

Heavy metals Mercury, arsenic, cadmium, chromium and lead Industrial processes, mining Water/soil 9,137

High salt Salt (NaCl) Road salting Soil/water 140

For each pollutant, we indicate the chemical species, the most common anthropogenic sources, the medium in which the pollutant is typically encountered (air, water or soil) and references.
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DNA replication errors such as unequal crossovers that can result in 
gene duplication and deletion are also possible. The location of DNA 
damage (coding versus non-coding regions), the molecular function 
of damaged DNA (regulatory versus structural) and whether coding 
mutations are synonymous or non-synonymous all can influence the 
molecular, physiological and fitness consequences of damage. The fit-
ness effects of mutation can in turn impact the ecology and evolution 
of populations49–51 (see ‘Ecological and evolutionary consequences’).

The effects of urban-induced mutations may differ between 
species because of variation in ploidy, cellular complexity, mutation 
rate, reproductive system, population size and generation time. For 
example, many animals, higher plants and some eukaryotic micro-
organisms live primarily as diploids or polyploids, which can mask 
the fitness effects of recessive mutations at low frequencies52,53. Simi-
larly, many multicellular organisms have differentiated germ and 
somatic cells, such that pollution-induced mutations in somatic cells 
will not generally be passed on to subsequent generations. By contrast, 
organisms with no distinction between germ and soma, such as some 
plants and fungi, may accumulate inherited mutations more rapidly 
if mutations arise in the cells that ultimately form gametic tissue54,55. 
Moreover, mutation rates vary by orders of magnitude, with bacteria 
and microbial eukaryotes having the lowest rates, vascular plants 

and animals having moderate rates, and viruses having the highest 
mutation rates4,56. Recombination in sexual organisms can allow more 
efficient purging of harmful mutations by selection than in asexual 
populations57,58. Finally, large populations with rapid generation times 
are expected to purge or fix environmentally induced mutations that 
affect fitness more rapidly than small long-lived populations59. In the 
sections that follow, we expand on how such variation among species 
may lead to different ecological and evolutionary consequences of 
urban-induced mutations.

Somatic mutations
The primary consequence of genotoxic exposure is the induction of 
somatic mutations that can adversely affect molecular, cellular and 
tissue function. Somatic mutations are not transmitted to the next 
generation unless they occur in germ cell progenitors, such as plant 
apical meristems60, so they typically affect only the exposed individual’s 
health and fitness. The causal role of chemically induced mutations in 
cancer development is well known in certain cases, such as lung cancer 
due to tobacco smoke61 (Table 2). These examples show that exposure 
to genotoxicants can cause mutations in tumour suppressor genes or 
proto-oncogenes that can function as cancer drivers, causing cellular 
proliferation, tumour development and genetic instability62. Moreover, 
exposure to mutagens during key life stages, especially embryogenesis 
and organogenesis, may increase the probability of clonal expansion of 
mutation-bearing cells17,63,64. Data supporting the association between 
environmentally induced mutations and non-cancerous diseases are 
almost entirely lacking, despite knowledge of mutations across the 
genome caused by genotoxicant exposure and a growing understand-
ing of the role of somatic cell mutagenicity in disease more generally 
(for example, ageing, neurological and cardiac diseases)65,66. Thus, there 
is currently no knowledge on the rates and functional consequences 
of pollution-induced somatic mutations for individuals, populations 
and species beyond the established association with cancer.

The study of mutagenesis is challenging because mutations are 
rare events at a genomic scale. This difficulty is compounded in the 
case of somatic mutations because the occurrence of mutations varies 
among tissues within a single individual. However, a variety of studies 
provide empirical evidence supporting an association between specific 
urban pollutants and elevated somatic cell mutation rates. The inven-
tion of the Salmonella mutation assay, often called the ‘Ames assay’, 
has been a transformative tool in the study of environmental mutagen-
esis67,68. In brief, the assay assesses how frequently Salmonella strains 
lacking the ability to metabolize histidine—due to engineered base-pair 
substitutions or frameshift mutations—exhibit revertant mutations 
to restore histidine metabolism when challenged by a toxicant17,67. 
This simple bacterial assay has revealed that the air, soil and water in 
urban environments is replete with mutagens67. Beyond Salmonella, 
observational and experimental cytogenetic studies show that numer-
ous chemical pollutants cause chromosomal abnormalities in diverse 
organisms, including structural aberrations and aneuploidy16,17,69. 
Additional lines of evidence are based on the types and distribution of 
mutations (the mutation spectrum) observed in human cancers used to 
infer mutagenic exposures70 as well as the COSMIC database71. Overall, 
laboratory models (for example, Salmonella, mice and plants) exposed 
to environmental media or extracts demonstrate the widespread muta-
genicity of many chemical pollutants in urban areas70.

The most extensive evidence of pollution-induced somatic cell 
mutagenicity is from studies on combustion-related by-products found 
in urban air pollution, contaminated soils and sediments. The weight 
of evidence for the mutagenicity of outdoor air pollution is high, with 
many specific agents declared “carcinogenic to humans” by the Inter-
national Agency for Research on Cancer18. This agency’s monographs 
thoroughly describe how these urban pollutants cause mutagenicity 
in laboratory organisms as diverse as bacteria, plants and rodents18,72. 
For example, the mutation spectrum observed in lung tumours of 

Box 1

Genotoxicity of urban 
pollutants and induction of 
mutations
Chemical pollutants are the primary cause of DNA damage induced 
by urban pollution. Ionizing radiation is less common but is a more 
extreme mechanism of DNA damage in and around cities. When 
an organism is exposed to a chemical pollutant, the pollutant can 
cause DNA damage and mutation through several steps:

(1)   �Pollutants can enter the cell via diffusion157 or receptor-mediated 
endocytosis158

(2)  Once inside the cell:
(a)  �Pollutants (for example, PAHs) can form bonds with nitrog-

enous DNA bases, resulting in DNA adducts159

(b)  �Presence and interaction of pollutants with cellular pro-
cesses or proteins causes increases in reactive oxygen 
species that can oxidize DNA and proteins160,161

(3)  �Chemically induced DNA lesions may be subject to error-prone 
DNA repair processes that cause mutations, or if the amount 
of damage exceeds the cell’s capacity for DNA repair, it can 
result in mutations or chromosome damage162

(4)  �Air pollutants can also cause oxidative stress via chronic in-
flammation and subsequent formation of reactive oxygen 
species18

Ionizing radiation and radiomimetic compounds can alter DNA 
sequences through a different mechanism:

(1)  �Radiation directly deposits energy in DNA, causing strand 
breaks, or it creates free radicals that damage DNA and 
proteins163,164

(2)  �Free radical DNA damage includes apurinic/apyrimidinic sites 
and deamination of DNA bases (among others), both of which 
have unique mutagenic mechanisms165

(3)  �Lack of repair or error-prone repair of this damage can cause 
chromosomal aberrations and mutations

http://www.nature.com/natecolevol
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non-smokers associated with air pollution is broadly consistent with 
exposure to bulky-DNA-adduct-forming chemicals such as benzo[a]
pyrene73,74. Additional evidence for the mutagenicity of air pollution 
comes from humans exposed to high levels of combustion by-products 
in residential and occupational settings, whereby individuals exhibit 
cytogenetic damage to various cell types75,76, and the urine from such 
individuals is mutagenic to bacterial cells77,78. Moreover, soil and sedi-
ments that contain combustion-related contaminants are mutagenic 
to organisms that frequently come into contact with these substrates, 
such as bacteria and plants17,69. Undoubtedly, inhabitants of any urban 
ecosystem are exposed to mutagenic particulate pollutants associated 
with combustion emissions.

There are many other examples of mutagenic contaminants found 
in urban settings, from metals to pesticides, organochlorines and ben-
zene (Table 1). These genotoxicants have the potential to impact the 
somatic cell mutation burden, contributing to the decreased health 
of individuals and populations18,79. The vast majority of mutagenicity 
testing is conducted in the laboratory on individual chemicals at high 
doses19, leading to a major gap in our understanding of how lifelong, 
low-dose exposures to mixtures of mutagens affect mutation rates 

and disease outcomes. Moreover, the complex interactions between 
sociodemographic factors and mutagenic environmental mixtures 
inherent to cities have yet to be explored.

The study of environmentally induced somatic cell mutations 
has been considerably hampered by the lack of tools available out-
side of the laboratory. Although single-cell deep-sequencing80 and 
error-corrected sequencing81,82 methodologies exist, these have mostly 
been applied in clinical settings and have yet to be extended to studies 
on environmental exposures in natural populations. The high levels of 
pollution in urban areas offer an opportunity to address these obstacles 
using field experiments, in addition to laboratory experiments, that 
apply genomic technologies to directly quantify mutation frequency 
and spectrum in a diverse array of organisms (see ‘Future directions’).

Germline mutations
Unlike somatic mutations, germline mutations are inherited between 
generations. For this reason, it is primarily germline mutations that can 
influence the evolution of populations. Although germline mutations 
are rare at the individual level, even the smallest increase in the muta-
tion rate can have large consequences for populations83.
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Fig. 1 | Global concentrations and composition of mutagenic and 
carcinogenic pollutants. Concentrations of PM2.5 across terrestrial Earth in 
2019–2020, with inset panels illustrating that concentrations are frequently 
highest in and around cities152,153. PM2.5 concentrations have been changing 
through time (top right inset), increasing in some cities (for example, Shanghai, 
China) and decreasing in others (for example, New York, USA)154. The stacked  
bar charts show how the composition of major carcinogenic pollutants  

(CO, volatile organic compounds (VOCs), SO2, NOx and ozone (O3)) in urban areas 
varies among countries155,156. High concentrations of PM2.5 outside urban areas 
are caused by a combination of anthropogenic sources such as long-distance 
dispersal of industrial pollution, burning of crops in agricultural regions, forest 
fires and naturally occurring fine dust picked up by strong winds from bare soil, 
especially in arid regions (for example, Saharan and sub-Saharan Africa).
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Laboratory and field studies suggest that exposure to many com-
mon urban pollutants can induce germline mutations. For example, 
over 80 chemical agents have been identified as germline mutagens 
in laboratory mice19. In humans, the best evidence of the impact of 
pollutants on germ cell mutagenesis comes from studies demonstrat-
ing an increased incidence of chromosomal abnormalities in human 
sperm19. Such abnormalities may explain the significant correlation 
between paternal blood dioxin levels due to occupational exposure 
and increased mutation rates in their offspring84. When considering 
exposure to radiation as an example of extreme exposure to a muta-
gen, children of parents exposed to ionizing radiation following the 
Chernobyl nuclear plant accident exhibited increased rates of tandem 
repeat mutations85. Similar inherited mutations have been observed 
in plants86 and barn swallows87. However, increases in inherited single 
nucleotide variants have yet to be conclusively demonstrated for 
humans exposed to radiation88. In non-polluted areas, a recent study 
reported a reduced mutation rate in an Amish population, which has 
been interpreted as traditional rural lifestyles leading to low mutation 
rates because of reduced exposure to chemical mutagens89. Very few 
studies have examined non-human populations outside of laboratory 
conditions, and they show that birds and rodents exhibit increased 
heritable mutation rates in repetitive DNA regions when exposed to 
ambient industrial air pollution6,7,90,91.

In addition to pollution, urban and rural human populations 
diverge in their demographic patterns in ways that are expected to 
influence germline mutation rates. In recent decades, there has been 
a trend for delayed childbearing in many countries. In both developed 
and developing nations, this delay is more pronounced in urban set-
tings than in rural settings92,93. Studies of human parents and offspring 
over the past decade have consistently demonstrated an age-related 
increase in mutation rates, especially in fathers94. It is estimated that 
fathers transmit ~1.2 additional mutations for each year of age, versus 
~0.4 new mutations per year of age in the mother. The higher paternal 
contribution is partially ascribed to the continuous production of 
sperm as men age, whereas no new oocytes are generated once a female 
individual is born. Surprisingly, the urban-biased shift towards delaying 
the age of reproduction is the only clear example of how urban living 
is associated with elevated germline mutation rates, other than urban 
pollution inducing mutations in repetitive regions of birds and mice. 
The consistency of divergence in parental age between urban and rural 
populations in developed and developing nations requires further 
investigation, as this major source of increased mutation rates could 

also result from differences in socio-economic factors and cultural dif-
ferences throughout the world. There is also evidence that non-human 
organisms exhibit demographic shifts in urban habitats95, but whether 
this is associated with changes in mutation rates requires investigation.

Despite the circumstantial evidence mentioned above for an effect 
of urban pollution and demographics on increased germline mutation 
rates, a direct link between urban pollution and mutations has yet 
to be definitively demonstrated using modern genome sequencing 
techniques. We therefore lack information on how and when urban 
pollution increases germline mutation rates, the targets of mutation 
and especially their phenotypic and fitness effects.

Ecological and evolutionary consequences
Alterations to the rate and spectrum of both somatic and germline 
mutations due to urban pollution could have important ecological and 
evolutionary repercussions. Theoretical and empirical studies show 
that the majority of new functionally significant mutations are delete-
rious and removed by purifying selection96. If deleterious mutations 
are elevated in urban settings, either due to a higher rate or as a larger 
fraction of deleterious mutations, we expect an increased mutation 
load (reduced fitness due to the burden of deleterious mutations rela-
tive to an unmutated individual) that will decrease population mean 
fitness97,98. Whether urban species in fact suffer a demographic decline 
depends on several factors including the strength of selection, effective 
population size (Ne) and generation time (Fig. 2). Keightley99 estimated 
that the decline in human fitness due to mutation could reach 0.01% 
per generation, and the decline would change linearly with changes 
in mutation rate. This estimate does not include the countering force 
of purifying selection. It is therefore likely that organisms with long 
generation times will experience little effect on population mean fitness 
in the short term. Conversely, organisms such as microorganisms that 
have short generation times may experience changes in fitness over 
contemporary timescales.

Although evolutionary responses depend on inherited germline 
mutations, somatic mutations also have important consequences 
for the health and fitness of individuals that contribute to long-term 
population viability. In multicellular organisms, somatic mutations 
can create a mosaic of cells with slightly different genotypes100. These 
mutations can lead to developmental instability, which is particularly 
detrimental in organisms with strict body plans such as animals101 
(Table 2). The genomic diversity within an individual can also produce 
competition among cell lineages that can be harmful, as in the case 

Table 2 | Cancers associated with urban-induced mutations

Health effect Region of study Pollutant Description of findings Refs.

Childhood cancers 
(leukaemia, neuroblastoma, 
renal and bone tumours)

Spain Air pollution Risk of cancer increased with closer proximity to industrial and  
urban areas

141–143

Lung cancer China PM (PM10: SO2) Lung cancer incidence and mortality increased with increased  
PM10; SO2 also positively correlated with cancer

144

USA PM (PM10: SO2, ozone) Lung cancer was most strongly correlated with PM10 exposure, 
followed by SO2 and ozone in male individuals; in female 
individuals, lung cancer correlated with SO2, followed by PM10

145

Canada Air pollution (PM2.5) PM2.5 associated with increased risk of lung cancer 146,147

Sweden Air pollution (NO2) NO2 exposure correlated to increased lung cancer 148

Stomach cancer China Soil pollution (heavy metals; 
Cd, Cr, Pb, Hg, As)

Heavy metals in soils correlated with higher stomach  
cancer incidence

149

Breast cancer USA Air pollution (NOx) Increased risk of breast cancer following NOx exposure in women 
living near major roads

150

Digestive system cancers China Water pollution Large-scale study identifying covariation between decreasing 
water quality and increased incidence of digestive cancers

151

Examples of the most common cancers associated with urban-induced mutations, including changes in rates of cancer in urban and non-urban populations. For each example, we indicate the 
study region, the pollutant studied and the main findings.
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of cancers. There is also clear evidence for intra-organismal selec-
tion for healthy cell lineages that can reduce the overall impact of 
deleterious mutations, including in marine tunicates and long-lived 
perennial plants100,101. These different phenomena hint at complex 
interactions between development, life history and genetic systems 
when determining the relative impact of elevated somatic mutation 
rates in urban settings. Given the evidence that urban habitats have 
elevated concentrations of numerous mutagens (Table 1), the impact 
of somatic mutations may become very important to predicting the 
sustainability of some urban populations (see ‘Applied impacts’).

Theory generally predicts an advantage for reduced mutation 
rates because most non-neutral mutations are deleterious102,103. We 
might therefore expect that urban populations will be under selec-
tion to reduce mutation rates in the presence of mutagens. The ability 
and time it takes for selection to reduce mutation rates will depend 
on numerous factors such as the mating system, Ne and target size 
(the amount of nucleotide sequence that can reduce mutation rate) 
for mutation modifiers104. The drift-barrier hypothesis105 predicts 
that directional selection will reduce mutation rates until a point 
at which the strength of genetic drift (1/Ne) overcomes the selec-
tive advantage (s) of smaller improvements in mutation rate (when 
Nes < 1). This hypothesis is supported by recent comparative genomic 
analyses that show that species with higher long-term Ne and shorter 
generation times tend to have lower mutation rates per generation5. 
There is an equilibrium point beyond which if mutation rates are suf-
ficiently high, selection to reduce the mutation rate should overcome 
drift. Nevertheless, if urban environments reduce an organism’s 

Ne, resulting in a loss of genetic diversity22, we may expect a higher 
equilibrium mutation rate.

Despite the genetic load created by deleterious mutations, 
mutation also provides the raw variation necessary for adaptation. 
These contrasting effects of mutation lead to the possibility that 
mutation-fuelled adaptation can result in an “evolutionary rescue”98,106 
(that is, an increase in the population growth rate of small populations 
due to adaptation) of populations subject to environmental challenges 
in urban environments (Fig. 2). For example, pathogens whose fitness in 
a new host is so low as to preclude persistence may benefit from higher 
mutation rates, where the higher the mutation rate, the larger the 
probability of evolutionary rescue107. However, this situation is highly 
context-dependent—once a population approaches its fitness opti-
mum, any new mutations are likely to be deleterious. It is reasonable 
to speculate that urban environments will pose such strong selective 
pressures that some populations will benefit from elevated mutational 
input during initial establishment (Fig. 2). The extent to which mutation 
will provide variation to tackle new selective challenges will depend on 
how elevated the mutation rate is in urban areas, how close a popula-
tion is to a fitness optimum, Ne and generation time (Fig. 2). If elevated 
mutation rates have beneficial implications for species colonizing 
urban environments, it may also mean that cities could facilitate rapid 
adaptation to pesticides, herbicides and antibiotics or provide the raw 
variation needed for pathogens to switch hosts.

It is plausible that elevated patterns of mutation in cities could 
facilitate speciation, especially if mutations induced by urban pollu-
tion cause chromosomal changes that affect mating compatibility, 
ecology or physiology. Elevated mutation rates in cities could help to 
fuel population divergence among urban and non-urban populations 
via local adaptation and accelerate genetic drift due to population 
fragmentation108. Under these conditions, higher mutation rates in 
urban settings would increase the possibility of generating mutations 
that are compatible with population-specific local alleles at other loci 
but incompatible with alleles in populations adapted to non-urban 
environments. Alleles that are compatible only with the genetic back-
ground in which they arose are called Bateson–Dobzhansky–Muller 
incompatibilities and often form the genetic basis of speciation109. 
Such incompatibilities may be particularly likely to occur if urban 
pollutants increase the frequency of chromosomal abnormalities or 
large structural mutations, including inversions, translocations, poly-
ploidy or elevated activity of transposable elements. It is these types of 
large-scale structural mutations that are most commonly associated 
with genes that influence reproductive isolation and large changes in 
ecology and physiology110. Even in the absence of reproductive isola-
tion, reduced vigour of urban and non-urban hybrids could alter the 
fitness of nearby populations. Overall, because elevated mutation rates 
in urban areas have the potential to lead to increased divergence108, we 
believe that cities offer unique opportunities to study the process of 
speciation in real time.

Applied impacts
Given that urbanization can increase mutation rates, we expect numer-
ous applied consequences associated with the health and conserva-
tion of organisms inhabiting cities. The anticipated health effects on 
humans and non-human species include cancers and other diseases 
linked to somatic and germline mutations. The conservation conse-
quences relate to how elevated mutation rates are expected to influ-
ence the fitness and long-term population growth of urban-dwelling 
species (Fig. 2).

Urban pollution causes numerous types of cancer in humans and 
other organisms. Contemporary urban pollution elevates lung74,111, 
breast112 and other forms of cancer113 by 10% to 1,000% above baseline 
incidence rates (Table 2). The magnitude of these effects varies among 
cities and over time because of variation in the types and concentra-
tions of pollutants (Fig. 1). Admittedly, most research on the health 
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Fig. 2 | The potential for elevated mutation rates in cities to affect the 
evolution of a population relative to a fitness optimum. When a population 
starts at a fitness optimum (dashed horizontal black line) in an urban 
environment (blue lines), any increase in the mutation rate (∆µ) can lead to a net 
increase in deleterious mutations within a population, moving the population 
further from the fitness optimum. If urban pollution elevates mutation rates in 
urban areas (that is, high ∆µ, indicated by the solid blue line), then we predict a 
population will move further from the fitness optimum through time. If ∆µ is low 
but still >0, then this effect can be relatively small. By contrast, when a population 
is initially maladapted to an urban environment (red lines), such that it starts far 
away from the fitness optimum, then higher mutation rates in urban areas (solid 
red line) can lead to rapid adaptation such that the population quickly evolves 
towards the fitness optimum. The rate of this evolution will be slower when ∆µ 
is lower (red dashed line). Such adaptive evolution could lead to evolutionary 
rescue, but such dynamics are only likely over contemporary time when Ne 
is high and generation times are short (as in viruses, bacteria and eukaryotic 
microorganisms). At equilibrium, populations are below the fitness optimum 
because elevated mutation rates in urban areas increase a population’s mutation 
load. Moreover, populations experiencing higher ∆µ are predicted to have lower 
fitness than those with lower ∆µ because most new mutations will be deleterious 
when a population is close to its fitness optimum. A population may remain 
maladapted (scenario not shown) when Ne is low and generation times are long, 
which could lead to extinction if population growth rates are negative.
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effects of urban pollution has been done on humans and rodents. How 
urban pollution affects somatic mutations and cancers in non-model 
organisms is poorly understood, especially outside of laboratory 
settings, and represents a gap in knowledge114–116 (see ‘Future direc-
tions’). Although heritable germline mutations have the potential to 
magnify cancer risk in offspring due to pollution exposure in parents, 
there is currently no evidence outside the laboratory of environmen-
tally induced heritable mutations causing cancer, even for ionizing 
radiation19,88,117. However, observational studies of birds7 and labora-
tory studies of rodents6,91 confirm that air pollution from steel mills 
can induce heritable germline mutations in repetitive DNA regions, 
which suggests that urban-induced mutations in cancer driver genes 
could also be inherited. Understanding how, when and where urban 
pollution leads to inherited mutations that influence cancer risk is an 
important goal for future research (see ‘Future directions’).

Multiple socio-ecological factors associated with urban lifestyles 
could interact with pollution to elevate mutation rates. The previously 
mentioned shift to older parental age among people in urban com-
pared with non-urban communities is the best-known cause of higher 
germline mutation rates in urban populations94. Urban mutagenic pol-
lution probably interacts with and amplifies this demographic effect 
on mutation rates. Human urban populations also exhibit increased 
rates of obesity and associated cancers due to a large proportion of 
processed foods in urban diets and relatively sedentary lifestyles118. 
Wildlife species also exhibit altered diets in cities that incorporate 
more anthropogenic food sources such as sugar, corn and wheat. Such 
diet shifts have been linked to higher body mass and hyperglycaemia 
in some species119–121. Food additives and contaminants in processed 
foods may influence germline mutation rates122, as could shifts in urban 
gut microbiomes123. Exposure to environmental pollutants and lack 
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Fig. 3 | Potential biosentinel species for studying urban-associated 
mutations. a–l, Proposed biosentinels include Salmonella enterica (a), 
Caenorhabditis elegans (b), Drosophila melanogaster (c), Arabidopsis thaliana 
(d), Trifolium repens (e), Flavoparmelia caperata (a lichen) (f), Fundulus majalis 
(g), Passer domesticus (h), Columba livia (i), Mus musculus (j), Rattus norvegicus 
(k) and Canis lupus familiaris (l). An image of humans (Homo sapiens) is not 
shown but is included in the schematics below. These species represent a 
range of traditional laboratory model organisms used for studying genetic and 
evolutionary processes, as well as emerging models for studying ecological 
responses to pollution or evolution in urban areas. m,n, Some species offer 
a combination of fast generation time and excellent genomic resources for 

mutagenic studies (m), whereas others are more directly relevant to humans 
(that is, with respect to health and well-being) and urbanization (that is, owing 
to their relative abundance in urban versus non-urban habitats) given their 
commensal status with humans (n). Credits: Phanie - Sipa Press/Alamy Stock 
Photo (a), Science Photo Library/Alamy Stock Photo (b), Itsik Marom/Alamy 
Stock Photo (c), thrillerfillerspiller/Alamy Stock Photo (d), Nigel Cattlin/Alamy 
Stock Photo (e), Clarence Holmes Wildlife/Alamy Stock Photo (f), Robert S. 
Michelson/Tom Stack & Assoc./Alamy Stock Photo (g), robertharding/Alamy 
Stock Photo (h), M. Johnson (i), Tim Mander/Alamy Stock Photo (j), Dave Bevan/
Alamy Stock Photo (k), K. L. Howard/Alamy Stock Photo (l).
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of access to high-quality diets may be biased towards certain urban 
demographics. Analysing urban mutagenesis and other evolutionary 
processes is thus an important step to address concerns about envi-
ronmental justice24,124,125.

Elevated mutation rates in cities have the potential to influence 
the dynamics of urban populations (Fig. 2). Given that most mutations 
are neutral or deleterious, it is likely that urban-induced mutations 
will frequently negatively affect individual fitness and population 
growth rate97,98. Determining whether such negative demographic 
effects will be sufficiently large to outweigh the influence of other 
factors requires careful quantification and modelling. We expect that 
the urban pollution-induced mutational load will be one of many fac-
tors threatening the persistence of populations and may become a 
conservation concern for rare or declining native species in cities. By 
contrast, we predict that populations of pests and other organisms that 
maintain large populations are less likely to be negatively affected by 
elevated mutation rates.

It is unlikely that urban-induced mutations will positively influence 
conservation through evolutionary rescue for most species. Only organ-
isms with rapid generation times and high Ne are expected to experience 
positive long-term fitness effects of elevated mutation rates, and even 
then, only when selection is strong (Fig. 2). Such scenarios are most 
likely to apply to viruses, bacteria and some eukaryotic microorgan-
isms (for example, yeast and algae), raising the possibility that elevated 
mutation rates in cities could promote the spread of pathogenic organ-
isms107. Field and laboratory experiments that examine how urban- 
induced changes in mutation rates affect known and emerging dis-
eases and pests could have important implications for public health.

Future directions
Our Perspective illustrates that water, soil and air pollution in urban 
areas increases mutation rates, but the magnitude and mutational 
spectrum of this increase, as well as its ecological and evolutionary 
consequences, remain unresolved. These gaps represent important 
problems requiring attention, which we outline as research questions 
below.

What is the magnitude of increase in somatic and germline 
mutation rates, and what are the types of mutations caused by 
urban pollution?
Although it is important to refine how somatic mutation rates are 
influenced by urban pollution, the greatest need remains establishing 
whether and under what circumstances urban pollution causes ger-
mline mutations in wild populations19. Conventional genomic technolo-
gies are poorly suited for quickly surveying the mutagenic properties 
of changing environments such as urban areas. New error-corrected 
sequencing approaches enable the study of rare mutations within a 
heterogenous population of cells126,127. These methods can facilitate 
more rapid and definitive tests of how urban pollution affects mutation 
rates because they rely on uniquely labelling individual DNA molecules 
prior to sequencing, which allows the removal of PCR and sequencing 
errors associated with standard next-generation sequencing. This ena-
bles, for the first time, the accurate quantification of rare mutations 
directly in the exposed organism.

What are the fitness effects of urban-induced mutations, 
and how do these influence the ecology and evolution of 
populations?
Answering this question will require a combination of laboratory and 
field experiments, coupled with genome sequencing. Laboratory 
experiments could establish how mutations caused by specific urban 
pollutants influence individual fitness, population growth and (mal)
adaptation. Field experiments could follow the fitness of individuals 
that exhibit the presence or absence of mutations. Such experiments 
could be expanded on by experimentally recreating mutations via 

transgenic or CRISPR manipulations. Finally, identification of somatic 
and germline mutations from human and wild urban populations of 
diverse organisms (Fig. 3) could be used to infer fitness and health 
effects on the basis of how the types and locations of mutations are 
expected to disrupt homeostasis using deep learning models of DNA 
sequence evolution across thousands of species128.

How do urban-induced mutations vary among species?
There is a need to expand the investigation of mutations caused by 
pollution to a wider diversity of organisms beyond humans given the 
indiscriminate threats of urban pollutants to all species. We propose a 
global research programme that uses a range of organisms as biosen-
tinels (organisms to assay mutations induced by pollution), where the 
species chosen would vary in their relevance to humans, prevalence in 
urban areas, generation time and genomic resources (Fig. 3). A biosen-
tinel programme could detect mutagenic effects even when specific 
mutagens are difficult to identify129,130. Bacteria, plants and human cell 
lines have all been proposed as urban biosentinels131. Salmonella has 
been the vanguard biosentinel because it responds readily to both 
known and unknown mutagens68, and we see it as a possible bacterial 
model moving forward (Fig. 3). Existing plant (Arabidopsis) and ani-
mal (Drosophila and Caenorhabditis elegans) model organisms offer 
a rich genomic toolkit, although given their marginal importance to 
humans and/or prevalence in urban areas, non-model organisms that 
have been the focus of studies in urban areas should also be included, 
such as white clover, dogs and various birds. Rodents, particularly 
house mouse (Mus musculus) and Norway rat (Rattus norvegicus), are 
important pests in urban areas that are commonly used in laborato-
ries, offering a biosentinel model that more closely resembles human 
physiology16. The deployment of such biosentinels could provide a 
rapid and accurate view of how urban-induced mutations affect the 
biology of urban-dwelling species, including humans.

Conclusions
Our Perspective highlights the potential broad-ranging mutagenic 
effects of urban pollution on virtually all life in cities. These mutagenic 
effects are expected to influence the fitness, ecology and evolution 
of wild populations, but these effects are largely unstudied outside 
of laboratory settings, and even there, only a small subset of species 
have been studied. Given the many mutagens that are prevalent in 
urban areas and their potentially large impacts on human and wildlife 
fitness, we argue that the study of urban mutagenesis is in urgent need 
of attention and should be prioritized in future research on health, 
ecology and evolution.
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