← Back to introduction

EM′-index

The EM′-index (Bihari and Tripathi 2017) is an extension of the EM-index which includes all publications, rather than just those from the core. Like the EM-index, we begin by creating a vector (E) where the first value is E1 = h. Subsequent values of the vector, Ei+1, are determined by subtracting Ei from the citation count for all publications in the core defined by Ei, and recalculating h from these new citation counts, reranking all publications by these new citation counts as necessary (i.e., some of the publications previously in the tail of the citation distribution may advance beyond publications in the core as citations representing earlier calculations of h are “used up”). This process continues until one runs out of citations, all of the remaining publications have only a single remaining citation, or there is only a single publication left to be considered. From this vector, one calculates the index as:

$$EM^\prime=\sqrt{\sum\limits_{i=1}^{n}{E_i}},$$

where Ei and n are the ith element and length of E, respectively.

Example

Publications are ordered by number of citations, from highest to lowest. After each step, Ei is subtracted from the citations of the top Ei publications and all publications are re-ranked by this adjusted citation count for the next step.

Citations (Ci)572616121110432111100000
Rank (i)123456789101112131415161718
E1 = 6
Adjusted Citations (Ci)512010654432111100000
New Rank (i)123456789101112131415161718
E2 = 5
Adjusted Citations (Ci)46155443211111000000
New Rank (i)123456789101112131415161718
E3 = 4
Adjusted Citations (Ci)42114321111110000000
New Rank (i)123456789101112131415161718
E4 = 3
Adjusted Citations (Ci)3983211111110000000
New Rank (i)123456789101112131415161718
E5 = 3
Adjusted Citations (Ci)3652111111100000000
New Rank (i)123456789101112131415161718
E6 = 2
Adjusted Citations (Ci)3432111111100000000
New Rank (i)123456789101112131415161718
E7 = 2
Adjusted Citations (Ci)3221111111100000000
New Rank (i)123456789101112131415161718
E8 = 2
Adjusted Citations (Ci)3011111111000000000
New Rank (i)123456789101112131415161718
E9 = 1
Adjusted Citations (Ci)2911111111000000000
New Rank (i)123456789101112131415161718
E10 = 1
Adjusted Citations (Ci)2811111111000000000
New Rank (i)123456789101112131415161718
E11 = 1
Adjusted Citations (Ci)2711111111000000000
New Rank (i)123456789101112131415161718
E12 = 1
Adjusted Citations (Ci)2611111111000000000
New Rank (i)123456789101112131415161718
E13 = 1
Adjusted Citations (Ci)2511111111000000000
New Rank (i)123456789101112131415161718
E14 = 1
Adjusted Citations (Ci)2411111111000000000
New Rank (i)123456789101112131415161718
E15 = 1
Adjusted Citations (Ci)2311111111000000000
New Rank (i)123456789101112131415161718
E16 = 1
Adjusted Citations (Ci)2211111111000000000
New Rank (i)123456789101112131415161718
E17 = 1
Adjusted Citations (Ci)2111111111000000000
New Rank (i)123456789101112131415161718
E18 = 1
Adjusted Citations (Ci)2011111111000000000
New Rank (i)123456789101112131415161718
E19 = 1
Adjusted Citations (Ci)1911111111000000000
New Rank (i)123456789101112131415161718
E20 = 1
Adjusted Citations (Ci)1811111111000000000
New Rank (i)123456789101112131415161718
E21 = 1
Adjusted Citations (Ci)1711111111000000000
New Rank (i)123456789101112131415161718
E22 = 1
Adjusted Citations (Ci)1611111111000000000
New Rank (i)123456789101112131415161718
E23 = 1
Adjusted Citations (Ci)1511111111000000000
New Rank (i)123456789101112131415161718
E24 = 1
Adjusted Citations (Ci)1411111111000000000
New Rank (i)123456789101112131415161718
E25 = 1
Adjusted Citations (Ci)1311111111000000000
New Rank (i)123456789101112131415161718
E26 = 1
Adjusted Citations (Ci)1211111111000000000
New Rank (i)123456789101112131415161718
E27 = 1
Adjusted Citations (Ci)1111111111000000000
New Rank (i)123456789101112131415161718
E28 = 1
Adjusted Citations (Ci)1011111111000000000
New Rank (i)123456789101112131415161718
E29 = 1
Adjusted Citations (Ci)911111111000000000
New Rank (i)123456789101112131415161718
E30 = 1
Adjusted Citations (Ci)811111111000000000
New Rank (i)123456789101112131415161718
E31 = 1
Adjusted Citations (Ci)711111111000000000
New Rank (i)123456789101112131415161718
E32 = 1
Adjusted Citations (Ci)611111111000000000
New Rank (i)123456789101112131415161718
E33 = 1
Adjusted Citations (Ci)511111111000000000
New Rank (i)123456789101112131415161718
E34 = 1
Adjusted Citations (Ci)411111111000000000
New Rank (i)123456789101112131415161718
E35 = 1
Adjusted Citations (Ci)311111111000000000
New Rank (i)123456789101112131415161718
E36 = 1
Adjusted Citations (Ci)211111111000000000
New Rank (i)123456789101112131415161718
E37 = 1
Adjusted Citations (Ci)111111111000000000
New Rank (i)123456789101112131415161718
E38 = 1

The sum of the 38 E values is 57. The EM′-index is the square-root of this sum, thus EM′ = 7.5498.

History

YearEM′
19971.0000
19982.4495
19994.4721
20005.5678
20017.5498
20029.5917
200311.3137
200413.0384
200514.6629
200616.1555
200718.3576
200820.0250
200921.8403
201024.0208
201125.9808
201227.8029
201329.3087
201431.1609
201532.6037
201634.3802
201736.0555
201837.2827
201938.4708
202039.4081
202140.5339
202241.8927
202342.9535
202443.8862

References