t-index (Singh)
Properties
- Metric Type: Alternative Metric
- Considerations and Adjustments: Time
- Publication Focus: All Publications, Core Publications
- Citation Focus: All Citations, Core Citations
Description
The t-index (Singh 2022) is an alternative metric for impact based on the information entropy of individual publications, with scaling factors based on academic age and the yearly h-index. It is calculated as:
$$t=4e^{T/T^\prime}\bar{h}_y,$$where
$$T = \sum\limits_{i=1}^{P}\frac{c_i}{C^P}\ln\frac{c_i}{C^P}$$and
$$T^\prime=\ln \left(10 \times \text{academic age} \right).$$It is a bit difficult to interpret and is not guaranteed to monotonically increase.
History
Year | t |
---|---|
1997 | 5.4050 |
1998 | 9.6470 |
1999 | 8.2349 |
2000 | 11.2866 |
2001 | 11.6907 |
2002 | 16.0428 |
2003 | 17.1062 |
2004 | 19.0029 |
2005 | 20.2976 |
2006 | 20.6265 |
2007 | 20.0462 |
2008 | 19.0323 |
2009 | 19.2605 |
2010 | 21.6919 |
2011 | 21.3775 |
2012 | 21.4571 |
2013 | 20.6413 |
2014 | 21.0686 |
2015 | 21.8915 |
2016 | 21.0655 |
2017 | 20.6790 |
2018 | 20.3583 |
2019 | 20.3956 |
2020 | 20.1418 |
2021 | 19.9257 |
2022 | 19.6624 |
2023 | 19.8908 |
2024 | 18.9470 |
2025 | 18.7748 |
References
- Singh, P.K. (2022) t-index: Entropy based random document and citation analysis using average h-index. Scientometrics 127:637-660.