w-index (Woeginger)
Woeginger's w-index (Woeginger 2008) is somewhat similar to the h-index. It is the largest value of w for which publications have at least 1, 2, 3, …w citations:
$$w=\underset{k}{\max}\left(C_i \geq k-i+1\right),$$for all i ≤ k. Put another way, the top 1…k publications have to have at least k…1 citations, respectively.
Graphically, if the h-index is the largest square with sides h that can fit under the citation curve, w is the largest right-angled isoceles triangle with perpendicular sides of w which fits under the curve.
Example
Publications are ordered by number of citations, from highest to lowest.
Citations (Ci) | 57 | 26 | 16 | 12 | 11 | 10 | 4 | 3 | 2 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rank (k) | k…1 | |||||||||||||||||||
1 | 1 | |||||||||||||||||||
2 | 2 | 1 | ||||||||||||||||||
3 | 3 | 2 | 1 | |||||||||||||||||
4 | 4 | 3 | 2 | 1 | ||||||||||||||||
5 | 5 | 4 | 3 | 2 | 1 | |||||||||||||||
6 | 6 | 5 | 4 | 3 | 2 | 1 | ||||||||||||||
7 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | |||||||||||||
8 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | ||||||||||||
9 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | |||||||||||
w = 10 | 10 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | |||||||||
11 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | |||||||||
12 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | ||||||||
13 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | |||||||
14 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | ||||||
15 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | |||||
16 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | ||||
17 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | |||
18 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
The largest rank where the minimum number of citations for publications 1…k ≤ k…1 is 10.
History
Year | w |
---|---|
1997 | 1 |
1998 | 4 |
1999 | 5 |
2000 | 8 |
2001 | 10 |
2002 | 14 |
2003 | 18 |
2004 | 23 |
2005 | 26 |
2006 | 31 |
2007 | 32 |
2008 | 35 |
2009 | 36 |
2010 | 41 |
2011 | 44 |
2012 | 45 |
2013 | 47 |
2014 | 48 |
2015 | 52 |
2016 | 54 |
2017 | 56 |
2018 | 57 |
2019 | 59 |
2020 | 61 |
2021 | 64 |
2022 | 64 |
2023 | 67 |
2024 | 68 |
References
- Woeginger, G.J. (2008) An axiomatic characterization of the Hirsch-index. Mathematical Social Sciences 56(2):224–242.