circular citation area radius
The circular citation area radius (Sangwal 2012) is an easy to calculate approximation of the h-index.
$$r=\sqrt{\frac{C^P}{\pi}}=\sqrt{\frac{\sum\limits_{i=1}^{P}{C_i}}{\pi}}$$History
Year | r |
---|---|
1997 | 0.7979 |
1998 | 2.1851 |
1999 | 3.7424 |
2000 | 5.1709 |
2001 | 6.7937 |
2002 | 9.0270 |
2003 | 11.2697 |
2004 | 14.2841 |
2005 | 17.3528 |
2006 | 20.7986 |
2007 | 23.9099 |
2008 | 26.8094 |
2009 | 29.6025 |
2010 | 32.6841 |
2011 | 35.9668 |
2012 | 38.9454 |
2013 | 41.9516 |
2014 | 44.5531 |
2015 | 47.0617 |
2016 | 49.4721 |
2017 | 51.5331 |
2018 | 53.5683 |
2019 | 55.5118 |
2020 | 57.4117 |
2021 | 59.4357 |
2022 | 61.3334 |
2023 | 62.9470 |
2024 | 64.6065 |
2025 | 64.9921 |
References
- Sangwal, K. (2012) On the relationship between citations of publication output and Hirsch index h of authors: Conceptualization of tapered Hirsch index hT, circular citation area radius R and ciation acceleration a. Scientometrics 93:987–1004.