fractional citation g-index
The fractional citation g-index (Egghe 2008) is a variant of the g-index normalized by the number of authors and is the g equivalent of the normalized hi-index. It is calculated as:
$$g_f=\underset{i}{\max}\left(i^2 \leq \sum\limits_{j=1}^{i}{\frac{C_j}{A_j}}\right).$$Example
Publications are ordered by adjusted number of citations, from highest to lowest.
Citations (Ci) | 57 | 11 | 26 | 16 | 12 | 10 | 2 | 4 | 1 | 1 | 3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Authors (Ai) | 3 | 1 | 3 | 2 | 3 | 4 | 1 | 4 | 1 | 1 | 4 | 2 | 4 | 4 | 2 | 1 | 1 | 1 |
Adjusted Citations (Ci/Ai) | 19.00 | 11.00 | 8.67 | 8.00 | 4.00 | 2.50 | 2.00 | 1.00 | 1.00 | 1.00 | 0.75 | 0.50 | 0.25 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Cumulative Adjusted Citations (ΣCi/Ai) | 19.00 | 30.00 | 38.67 | 46.67 | 50.67 | 53.17 | 55.17 | 56.17 | 57.17 | 58.17 | 58.92 | 59.42 | 59.67 | 59.67 | 59.67 | 59.67 | 59.67 | 59.67 |
Rank (i) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
Rank Squared (i2) | 1 | 4 | 9 | 16 | 25 | 36 | 49 | 64 | 81 | 100 | 121 | 144 | 169 | 196 | 225 | 256 | 289 | 324 |
gf = 7 |
The largest rank where i2 ≤ ΣCi/Ai is 7.
History
Year | gf |
---|---|
1997 | 0 |
1998 | 1 |
1999 | 3 |
2000 | 5 |
2001 | 7 |
2002 | 9 |
2003 | 12 |
2004 | 15 |
2005 | 18 |
2006 | 23 |
2007 | 27 |
2008 | 30 |
2009 | 33 |
2010 | 37 |
2011 | 41 |
2012 | 44 |
2013 | 48 |
2014 | 51 |
2015 | 53 |
2016 | 56 |
2017 | 58 |
2018 | 61 |
2019 | 63 |
2020 | 66 |
2021 | 68 |
2022 | 71 |
2023 | 73 |
2024 | 75 |
References
- Egghe, L. (2008) Mathematical theory of the h- and g-index in case of fractional counting of authorship. Journal of the American Society for Information Science and Technology 59(10):1608–1616.