iteratively weighted h-index
The interatively weighted h-index (Todeschini and Baccini 2016) is a method for producing a single global index from the vector produced by the multidimensional h-index (H). This index is calculated as:
$$iw\left(h\right)=\sum\limits_{j=1}^{n}{\frac{h_j}{j}}.$$where hj and n are the jth value and total length of H, respectively.
History
Year | iw(h)-index |
---|---|
1997 | 1.5000 |
1998 | 3.8333 |
1999 | 4.5833 |
2000 | 6.5000 |
2001 | 8.0929 |
2002 | 10.8667 |
2003 | 14.2000 |
2004 | 16.9500 |
2005 | 19.5095 |
2006 | 22.0833 |
2007 | 24.5000 |
2008 | 27.1667 |
2009 | 29.1167 |
2010 | 32.0512 |
2011 | 35.2000 |
2012 | 38.0429 |
2013 | 39.3012 |
2014 | 41.4623 |
2015 | 43.0607 |
2016 | 43.8623 |
2017 | 45.9179 |
2018 | 46.7790 |
2019 | 47.4218 |
2020 | 48.7190 |
2021 | 50.2190 |
2022 | 52.2012 |
2023 | 53.4690 |
2024 | 54.7052 |
References
- Todeschini, R., and A. Baccini (2016) Handbook of Bibliometric Indicators: Quantitative Tools for Studying and Evaluating Research. Weinheim, Germany: Wiley.