iterative weighted EM-index
The iterative weighted EM-index (Bihari et al. 2021) is a modification of the EM-index which uses a weighted-sum of each successive element in the vector rather than the square-root of the sum. The index begins by creating a vector (E) which is equivalent to the upper/excess half of the two-sided h-index, namely a series of h-index values calculated from the citation curve of just the core publications, stopping when one reaches only a single remaining publication, no citations remain, or all remaining publications have only a single citation. From this vector, iwEM can be calculated as:
$$iw_{EM}=\sum\limits_{i=1}^{n}\frac{E_i}{i},$$where Ei and n are the ith element and length of E, respectively.
Example
Publications are ordered by number of citations, from highest to lowest. After each step, Ei is subtracted from the citations of the top Ei publications. All publications beyond the top Ei are ignored at subsequent steps.
Citations (Ci) | 57 | 26 | 16 | 12 | 11 | 10 | 4 | 3 | 2 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rank (i) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
E1 = 6 | ||||||||||||||||||
Adjusted Citations (Ci) | 51 | 20 | 10 | 6 | 5 | 4 | ||||||||||||
Rank (i) | 1 | 2 | 3 | 4 | 5 | 6 | ||||||||||||
E2 = 5 | ||||||||||||||||||
Adjusted Citations (Ci) | 46 | 15 | 5 | 1 | 0 | |||||||||||||
Rank (i) | 1 | 2 | 3 | 4 | 5 | |||||||||||||
E3 = 3 | ||||||||||||||||||
Adjusted Citations (Ci) | 43 | 12 | 2 | |||||||||||||||
Rank (i) | 1 | 2 | 3 | |||||||||||||||
E4 = 2 | ||||||||||||||||||
Adjusted Citations (Ci) | 41 | 10 | ||||||||||||||||
Rank (i) | 1 | 2 | ||||||||||||||||
E5 = 2 | ||||||||||||||||||
Adjusted Citations (Ci) | 39 | 8 | ||||||||||||||||
Rank (i) | 1 | 2 | ||||||||||||||||
E6 = 2 | ||||||||||||||||||
Adjusted Citations (Ci) | 37 | 6 | ||||||||||||||||
Rank (i) | 1 | 2 | ||||||||||||||||
E7 = 2 | ||||||||||||||||||
Adjusted Citations (Ci) | 35 | 4 | ||||||||||||||||
Rank (i) | 1 | 2 | ||||||||||||||||
E8 = 2 | ||||||||||||||||||
Adjusted Citations (Ci) | 33 | 2 | ||||||||||||||||
Rank (i) | 1 | 2 | ||||||||||||||||
E9 = 2 |
iwEM is the sum of each component of E weighted by it's order, thus iwEM = 6/1 + 5/2 + 3/3 + 2/4 + 2/5 + 2/6 + 2/7 + 2/8 + 2/9 = 11.4913
History
Year | iwEM |
---|---|
1997 | 1.0000 |
1998 | 3.0000 |
1999 | 6.0429 |
2000 | 8.7333 |
2001 | 11.4913 |
2002 | 13.9079 |
2003 | 18.5559 |
2004 | 24.8645 |
2005 | 30.8317 |
2006 | 36.0640 |
2007 | 42.4356 |
2008 | 48.5511 |
2009 | 54.7262 |
2010 | 58.7052 |
2011 | 65.0592 |
2012 | 71.8771 |
2013 | 77.0540 |
2014 | 81.2062 |
2015 | 84.4881 |
2016 | 86.6683 |
2017 | 90.2959 |
2018 | 93.3921 |
2019 | 95.6620 |
2020 | 98.3624 |
2021 | 101.5602 |
2022 | 104.8935 |
2023 | 107.3123 |
2024 | 109.0222 |
References
- Bihari, A., S. Tripathi, and A. Deepak (2021) Iterative weighted EM and iterative weighted EM′-index for scientific assessment of scholars. Scientometrics 126:5551–5568.