← Back to introduction

iterative weighted EM′-index

The iterative weighted EM′-index (Bihari et al. 2021) is a modification of the EM′-index (Bihari and Tripathi 2017) which uses a weighted-sum of each successive element in the vector rather than the square-root of the sum. It is an extension of the iterative weighted EM-index which includes all publications, rather than just those from the core. We begin by creating a vector (E) where the first value is E1 = h. Subsequent values of the vector, Ei+1, are determined by subtracting Ei from the citation count for all publications in the core defined by Ei, and recalculating h from these new citation counts, reranking all publications by these new citation counts as necessary (i.e., some of the publications previously in the tail of the citation distribution may advance beyond publications in the core as citations representing earlier calculations of h are “used up”). This process continues until one runs out of citations, all of the remaining publications have only a single remaining citation, or there is only a single publication left to be considered. From this vector, one calculates the index as:

$$iw_{EM^\prime}= \sum\limits_{i=1}^{n}\frac{E_i}{i},$$

where Ei and n are the ith element and length of E, respectively.

Example

Publications are ordered by number of citations, from highest to lowest. After each step, Ei is subtracted from the citations of the top Ei publications and all publications are re-ranked by this adjusted citation count for the next step.

Citations (Ci)572616121110432111100000
Rank (i)123456789101112131415161718
E1 = 6
Adjusted Citations (Ci)512010654432111100000
New Rank (i)123456789101112131415161718
E2 = 5
Adjusted Citations (Ci)46155443211111000000
New Rank (i)123456789101112131415161718
E3 = 4
Adjusted Citations (Ci)42114321111110000000
New Rank (i)123456789101112131415161718
E4 = 3
Adjusted Citations (Ci)3983211111110000000
New Rank (i)123456789101112131415161718
E5 = 3
Adjusted Citations (Ci)3652111111100000000
New Rank (i)123456789101112131415161718
E6 = 2
Adjusted Citations (Ci)3432111111100000000
New Rank (i)123456789101112131415161718
E7 = 2
Adjusted Citations (Ci)3221111111100000000
New Rank (i)123456789101112131415161718
E8 = 2
Adjusted Citations (Ci)3011111111000000000
New Rank (i)123456789101112131415161718
E9 = 1
Adjusted Citations (Ci)2911111111000000000
New Rank (i)123456789101112131415161718
E10 = 1
Adjusted Citations (Ci)2811111111000000000
New Rank (i)123456789101112131415161718
E11 = 1
Adjusted Citations (Ci)2711111111000000000
New Rank (i)123456789101112131415161718
E12 = 1
Adjusted Citations (Ci)2611111111000000000
New Rank (i)123456789101112131415161718
E13 = 1
Adjusted Citations (Ci)2511111111000000000
New Rank (i)123456789101112131415161718
E14 = 1
Adjusted Citations (Ci)2411111111000000000
New Rank (i)123456789101112131415161718
E15 = 1
Adjusted Citations (Ci)2311111111000000000
New Rank (i)123456789101112131415161718
E16 = 1
Adjusted Citations (Ci)2211111111000000000
New Rank (i)123456789101112131415161718
E17 = 1
Adjusted Citations (Ci)2111111111000000000
New Rank (i)123456789101112131415161718
E18 = 1
Adjusted Citations (Ci)2011111111000000000
New Rank (i)123456789101112131415161718
E19 = 1
Adjusted Citations (Ci)1911111111000000000
New Rank (i)123456789101112131415161718
E20 = 1
Adjusted Citations (Ci)1811111111000000000
New Rank (i)123456789101112131415161718
E21 = 1
Adjusted Citations (Ci)1711111111000000000
New Rank (i)123456789101112131415161718
E22 = 1
Adjusted Citations (Ci)1611111111000000000
New Rank (i)123456789101112131415161718
E23 = 1
Adjusted Citations (Ci)1511111111000000000
New Rank (i)123456789101112131415161718
E24 = 1
Adjusted Citations (Ci)1411111111000000000
New Rank (i)123456789101112131415161718
E25 = 1
Adjusted Citations (Ci)1311111111000000000
New Rank (i)123456789101112131415161718
E26 = 1
Adjusted Citations (Ci)1211111111000000000
New Rank (i)123456789101112131415161718
E27 = 1
Adjusted Citations (Ci)1111111111000000000
New Rank (i)123456789101112131415161718
E28 = 1
Adjusted Citations (Ci)1011111111000000000
New Rank (i)123456789101112131415161718
E29 = 1
Adjusted Citations (Ci)911111111000000000
New Rank (i)123456789101112131415161718
E30 = 1
Adjusted Citations (Ci)811111111000000000
New Rank (i)123456789101112131415161718
E31 = 1
Adjusted Citations (Ci)711111111000000000
New Rank (i)123456789101112131415161718
E32 = 1
Adjusted Citations (Ci)611111111000000000
New Rank (i)123456789101112131415161718
E33 = 1
Adjusted Citations (Ci)511111111000000000
New Rank (i)123456789101112131415161718
E34 = 1
Adjusted Citations (Ci)411111111000000000
New Rank (i)123456789101112131415161718
E35 = 1
Adjusted Citations (Ci)311111111000000000
New Rank (i)123456789101112131415161718
E36 = 1
Adjusted Citations (Ci)211111111000000000
New Rank (i)123456789101112131415161718
E37 = 1
Adjusted Citations (Ci)111111111000000000
New Rank (i)123456789101112131415161718
E38 = 1

iwEM′ is the sum of each component of E weighted by it's order, thus iwEM′ = 6/1 + 5/2 + 4/3 + 3/4 + 3/5 + 2/6 + 2/7 + 2/8 + 1/9 + 1/10 + 1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1/16 + 1/17 + 1/18 + 1/19 + 1/20 + 1/21 + 1/22 + 1/23 + 1/24 + 1/25 + 1/26 + 1/27 + 1/28 + 1/29 + 1/30 + 1/31 + 1/32 + 1/33 + 1/34 + 1/35 + 1/36 + 1/37 + 1/38 = 13.5624

History

YeariwEM′
19971.0000
19984.3333
19996.7579
200010.6819
200113.5624
200217.6098
200322.7210
200428.9169
200534.8333
200640.6883
200747.3619
200852.8233
200958.5990
201063.3471
201170.0664
201276.4060
201381.0973
201484.8160
201588.6171
201691.2885
201794.4541
201897.8164
2019100.7622
2020103.9575
2021107.3402
2022110.5720
2023113.0407
2024115.1477

References