← Back to introduction

k-norm index

Properties

Description

The k-norm index (Anania and Caruso 2013) is a variant of the k-index (Anania and Caruso), where citation counts are first normalized by dividing by the number of coauthors for each publication:

$$C^{*}_i = \frac{C_i}{A_i}.$$

These are used to calculate a normalized version of h (h-norm index), and then k-norm is determined as:$$k{-}norm=h{-}norm+\left(1-\frac{{h{-}norm}^2}{\sum\limits_{i=1}^{h{-}norm} C^{*}_i}\right).$$

History

Yeark-norm
19970.0000
19981.5714
19992.6250
20004.4451
20014.6620
20026.5706
20038.5351
20049.5963
200512.5394
200614.5716
200716.5924
200819.5639
200920.6107
201022.6247
201123.6629
201224.6833
201326.6890
201426.7205
201526.7472
201627.7551
201727.7735
201827.7904
201928.7918
202029.7923
202131.7807
202233.7707
202333.7837
202433.7955
202533.8010

References