real h-index
One can calculate the real h-index (Guns and Rousseau 2009), also known as the interpolated h-index, as the point at which the linear interpolation between the citation counts associated with publications h and h + 1 crosses a line with slope one,
$$h_r=\frac{\left(h+1\right)C_h-hC_{h+1}}{1-C_{h+1}+C_h}.$$The real h-index has the same graphical definition as the h-index, except it is not restricted to integer values and thus represents the actual point where the citation and threshold curves cross.History
Year | hr |
---|---|
1997 | 1.0000 |
1998 | 3.0000 |
1999 | 3.5000 |
2000 | 5.5000 |
2001 | 6.5714 |
2002 | 7.7500 |
2003 | 10.6667 |
2004 | 12.0000 |
2005 | 14.5000 |
2006 | 16.8000 |
2007 | 19.0000 |
2008 | 21.5000 |
2009 | 24.6667 |
2010 | 25.8333 |
2011 | 28.5000 |
2012 | 32.2500 |
2013 | 33.0000 |
2014 | 34.3333 |
2015 | 35.0000 |
2016 | 35.8000 |
2017 | 37.0000 |
2018 | 37.0000 |
2019 | 37.0000 |
2020 | 38.3333 |
2021 | 39.6667 |
2022 | 41.0000 |
2023 | 42.0000 |
2024 | 42.5000 |
References
- Guns, R., and R. Rousseau (2009) Real and rational variants of the h-index and the g-index. Journal of Informetrics 3:64–71.